Book contents
- Frontmatter
- Contents
- List of contributors
- Foreword
- Preface
- Acknowledgements
- Part I General perspectives
- Part II Regional floristic and animal diversity
- Part III Hydrometeorology of tropical montane cloud forest
- 20 Hydrometeorological patterns in relation to montane forest types along an elevational gradient in the Yungas of Bolivia
- 21 Structure and dynamics of tropical montane cloud forests under contrasting biophysical conditions in north-western Costa Rica
- 22 Quantitative measures of immersion in cloud and the biogeography of cloud forests
- 23 Understanding the role of fog in forest hydrology: stable isotopes as tools for determining input and partitioning of cloud water in montane forests
- 24 Using stable isotopes to identify orographic precipitation events at Monteverde, Costa Rica
- 25 Using “biosensors” to elucidate rates and mechanisms of cloud water interception by epiphytes, leaves, and branches in a sheltered Colombian cloud forest
- 26 Water dynamics of epiphytic vegetation in a lower montane cloud forest: fog interception, storage, and evaporation
- 27 Epiphyte biomass in Costa Rican old-growth and secondary montane rain forests and its hydrological significance
- 28 Comparison of passive fog gages for determining fog duration and fog interception by a Puerto Rican elfin cloud forest
- 29 Fog interception in a Puerto Rican elfin cloud forest: a wet-canopy water budget approach
- 30 Fog gage performance under conditions of fog and wind-driven rain
- 31 The wet-canopy water balance of a Costa Rican cloud forest during the dry season
- 32 Measured and modeled rainfall interception in a lower montane forest, Ecuador
- 33 Measuring cloud water interception in the Tambito forests of southern Colombia
- 34 Relationships between rainfall, fog, and throughfall at a hill evergreen forest site in northern Thailand
- 35 History of fog and cloud water interception research in Hawai'i
- 36 Interpreting canopy water balance and fog screen observations: separating cloud water from wind-blown rainfall at two contrasting forest sites in Hawai'i
- 37 Historical background of fog water collection studies in the Canary Islands
- 38 Effects of fog on climatic conditions at a sub-tropical montane cloud forest site in northern Tenerife (Canary Islands, Spain)
- Part IV Nutrient dynamics in tropical montane cloud forests
- Part V Cloud forest water use, photosynthesis, and effects of forest conversion
- Part VI Effects of climate variability and climate change
- Part VII Cloud forest conservation, restoration, and management issues
- References
35 - History of fog and cloud water interception research in Hawai'i
from Part III - Hydrometeorology of tropical montane cloud forest
Published online by Cambridge University Press: 03 May 2011
- Frontmatter
- Contents
- List of contributors
- Foreword
- Preface
- Acknowledgements
- Part I General perspectives
- Part II Regional floristic and animal diversity
- Part III Hydrometeorology of tropical montane cloud forest
- 20 Hydrometeorological patterns in relation to montane forest types along an elevational gradient in the Yungas of Bolivia
- 21 Structure and dynamics of tropical montane cloud forests under contrasting biophysical conditions in north-western Costa Rica
- 22 Quantitative measures of immersion in cloud and the biogeography of cloud forests
- 23 Understanding the role of fog in forest hydrology: stable isotopes as tools for determining input and partitioning of cloud water in montane forests
- 24 Using stable isotopes to identify orographic precipitation events at Monteverde, Costa Rica
- 25 Using “biosensors” to elucidate rates and mechanisms of cloud water interception by epiphytes, leaves, and branches in a sheltered Colombian cloud forest
- 26 Water dynamics of epiphytic vegetation in a lower montane cloud forest: fog interception, storage, and evaporation
- 27 Epiphyte biomass in Costa Rican old-growth and secondary montane rain forests and its hydrological significance
- 28 Comparison of passive fog gages for determining fog duration and fog interception by a Puerto Rican elfin cloud forest
- 29 Fog interception in a Puerto Rican elfin cloud forest: a wet-canopy water budget approach
- 30 Fog gage performance under conditions of fog and wind-driven rain
- 31 The wet-canopy water balance of a Costa Rican cloud forest during the dry season
- 32 Measured and modeled rainfall interception in a lower montane forest, Ecuador
- 33 Measuring cloud water interception in the Tambito forests of southern Colombia
- 34 Relationships between rainfall, fog, and throughfall at a hill evergreen forest site in northern Thailand
- 35 History of fog and cloud water interception research in Hawai'i
- 36 Interpreting canopy water balance and fog screen observations: separating cloud water from wind-blown rainfall at two contrasting forest sites in Hawai'i
- 37 Historical background of fog water collection studies in the Canary Islands
- 38 Effects of fog on climatic conditions at a sub-tropical montane cloud forest site in northern Tenerife (Canary Islands, Spain)
- Part IV Nutrient dynamics in tropical montane cloud forests
- Part V Cloud forest water use, photosynthesis, and effects of forest conversion
- Part VI Effects of climate variability and climate change
- Part VII Cloud forest conservation, restoration, and management issues
- References
Summary
ABSTRACT
Research on fog climatology and cloud water interception (CWI) in the montane cloud forests of Hawai'i spans nearly 50 years, from the pioneering work of Wendell Mordy and Paul Ekern on Lâna'i in the 1950s, through the continuing efforts of James Juvik since 1972. This work has helped to improve understanding of the spatial patterns of fog occurrence and to quantify CWI in forests and other vegetation. Reported CWI or fog incidence estimates are as high as 4982 mm year−1 at particularly exposed locations, although most windward sites within the cloud zone are in the range between 280 and 1130 mm year−1, with leeward sites receiving between 100 and 500 mm year−1, and less than 250 mm year−1 in high-elevation areas above the trade-wind inversion. Most of the early work was based on mechanical fog gage measurements whose well-known limitations make accurate estimation of actual CWI by a forest canopy difficult. Advancing the current level of understanding will have to come from studies incorporating other methods, such as the wet-canopy water budget and stable isotope mass balance approaches, in addition to the continued use of recording fog and throughfall gages.
- Type
- Chapter
- Information
- Tropical Montane Cloud ForestsScience for Conservation and Management, pp. 332 - 341Publisher: Cambridge University PressPrint publication year: 2011
References
- 3
- Cited by