Book contents
- Frontmatter
- Contents
- List of contributors
- Foreword
- Preface
- Acknowledgements
- Part I General perspectives
- Part II Regional floristic and animal diversity
- Part III Hydrometeorology of tropical montane cloud forest
- 20 Hydrometeorological patterns in relation to montane forest types along an elevational gradient in the Yungas of Bolivia
- 21 Structure and dynamics of tropical montane cloud forests under contrasting biophysical conditions in north-western Costa Rica
- 22 Quantitative measures of immersion in cloud and the biogeography of cloud forests
- 23 Understanding the role of fog in forest hydrology: stable isotopes as tools for determining input and partitioning of cloud water in montane forests
- 24 Using stable isotopes to identify orographic precipitation events at Monteverde, Costa Rica
- 25 Using “biosensors” to elucidate rates and mechanisms of cloud water interception by epiphytes, leaves, and branches in a sheltered Colombian cloud forest
- 26 Water dynamics of epiphytic vegetation in a lower montane cloud forest: fog interception, storage, and evaporation
- 27 Epiphyte biomass in Costa Rican old-growth and secondary montane rain forests and its hydrological significance
- 28 Comparison of passive fog gages for determining fog duration and fog interception by a Puerto Rican elfin cloud forest
- 29 Fog interception in a Puerto Rican elfin cloud forest: a wet-canopy water budget approach
- 30 Fog gage performance under conditions of fog and wind-driven rain
- 31 The wet-canopy water balance of a Costa Rican cloud forest during the dry season
- 32 Measured and modeled rainfall interception in a lower montane forest, Ecuador
- 33 Measuring cloud water interception in the Tambito forests of southern Colombia
- 34 Relationships between rainfall, fog, and throughfall at a hill evergreen forest site in northern Thailand
- 35 History of fog and cloud water interception research in Hawai'i
- 36 Interpreting canopy water balance and fog screen observations: separating cloud water from wind-blown rainfall at two contrasting forest sites in Hawai'i
- 37 Historical background of fog water collection studies in the Canary Islands
- 38 Effects of fog on climatic conditions at a sub-tropical montane cloud forest site in northern Tenerife (Canary Islands, Spain)
- Part IV Nutrient dynamics in tropical montane cloud forests
- Part V Cloud forest water use, photosynthesis, and effects of forest conversion
- Part VI Effects of climate variability and climate change
- Part VII Cloud forest conservation, restoration, and management issues
- References
24 - Using stable isotopes to identify orographic precipitation events at Monteverde, Costa Rica
from Part III - Hydrometeorology of tropical montane cloud forest
Published online by Cambridge University Press: 03 May 2011
- Frontmatter
- Contents
- List of contributors
- Foreword
- Preface
- Acknowledgements
- Part I General perspectives
- Part II Regional floristic and animal diversity
- Part III Hydrometeorology of tropical montane cloud forest
- 20 Hydrometeorological patterns in relation to montane forest types along an elevational gradient in the Yungas of Bolivia
- 21 Structure and dynamics of tropical montane cloud forests under contrasting biophysical conditions in north-western Costa Rica
- 22 Quantitative measures of immersion in cloud and the biogeography of cloud forests
- 23 Understanding the role of fog in forest hydrology: stable isotopes as tools for determining input and partitioning of cloud water in montane forests
- 24 Using stable isotopes to identify orographic precipitation events at Monteverde, Costa Rica
- 25 Using “biosensors” to elucidate rates and mechanisms of cloud water interception by epiphytes, leaves, and branches in a sheltered Colombian cloud forest
- 26 Water dynamics of epiphytic vegetation in a lower montane cloud forest: fog interception, storage, and evaporation
- 27 Epiphyte biomass in Costa Rican old-growth and secondary montane rain forests and its hydrological significance
- 28 Comparison of passive fog gages for determining fog duration and fog interception by a Puerto Rican elfin cloud forest
- 29 Fog interception in a Puerto Rican elfin cloud forest: a wet-canopy water budget approach
- 30 Fog gage performance under conditions of fog and wind-driven rain
- 31 The wet-canopy water balance of a Costa Rican cloud forest during the dry season
- 32 Measured and modeled rainfall interception in a lower montane forest, Ecuador
- 33 Measuring cloud water interception in the Tambito forests of southern Colombia
- 34 Relationships between rainfall, fog, and throughfall at a hill evergreen forest site in northern Thailand
- 35 History of fog and cloud water interception research in Hawai'i
- 36 Interpreting canopy water balance and fog screen observations: separating cloud water from wind-blown rainfall at two contrasting forest sites in Hawai'i
- 37 Historical background of fog water collection studies in the Canary Islands
- 38 Effects of fog on climatic conditions at a sub-tropical montane cloud forest site in northern Tenerife (Canary Islands, Spain)
- Part IV Nutrient dynamics in tropical montane cloud forests
- Part V Cloud forest water use, photosynthesis, and effects of forest conversion
- Part VI Effects of climate variability and climate change
- Part VII Cloud forest conservation, restoration, and management issues
- References
Summary
ABSTRACT
Monteverde, in north-western Costa Rica, is located on the leeward side of the Continental Divide, and experiences strong seasonal variations in precipitation. The majority of rainfall to the region occurs during the wet season (May–October) when the Intertropical Convergence Zone (ITCZ) brings convective rainfall. In addition, trade winds produce orographic uplift and condensation, and this hydrological input is dominant during the transitional (November–January) and dry (February–April) seasons. This chapter assesses the viability of using stable isotopes of oxygen and hydrogen to identify and distinguish waters arisen from these two condensation mechanisms, with the future goal of using these signatures to trace precipitation through the hydrological cycle.
Open-field precipitation and throughfall were sampled at Monteverde at an elevation of 1460 m.a.s.l. from mid-June 2003 to mid-January 2004. Cumulative precipitation was collected over a variable sampling interval that ranged from 1 to 48 days. The sampling interval averaged 4 days during June–July 2003 and January 2004; otherwise, samples were collected on average every 26 days. The wet season yielded a wide range of isotopic values, from −13.1 to −3.0‰ (δ18O) and −96 to −15‰ (δ2H). The isotopically lightest samples were collected during June and September/October, when the ITCZ is over Costa Rica. Rain and fog samples collected during the transitional season were isotopically heavier, ranging from −4.3 to −1.9‰ (δ18O) and −16 to + 6‰ (δ2H). January precipitation samples all yielded positive δ2H values and had isotopic compositions similar to those of fog water samples reported elsewhere.
- Type
- Chapter
- Information
- Tropical Montane Cloud ForestsScience for Conservation and Management, pp. 242 - 248Publisher: Cambridge University PressPrint publication year: 2011
References
- 2
- Cited by