Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-28T02:37:53.302Z Has data issue: false hasContentIssue false

6 - Multisymplectic formalism and the covariant phase space

Published online by Cambridge University Press:  05 November 2011

Frédéric Hélein
Affiliation:
Institut de Mathématiques de Jussieu
Roger Bielawski
Affiliation:
University of Leeds
Kevin Houston
Affiliation:
University of Leeds
Martin Speight
Affiliation:
University of Leeds
Get access

Summary

In most attempts to build the mathematical foundations of Quantum Field Theory (QFT), two classical ways have been explored. The first one is often referred to as the Feynman integral or functional integral method. It is a generalization to fields of the path integral method of quantum mechanics and is heuristically based on computing integrals over the infinite dimensional set of all possible fields Φ by using a kind of ‘measure’ – which should behave like the Lebesgue measure on the set of all possible fields Φ – times eiℒ(Φ)/ℏ, where ℒ is a Lagrangian functional (but attempts to define this ‘measure’ failed in most cases). The second one is referred to as the canonical quantization method and is based on the Hamiltonian formulation of the dynamics of classical fields, by following general axioms which were first proposed by Dirac and later refined. The Feynman approach has the advantage of being manifestly relativistic, i.e. it does not require the choice of a particular system of space-time coordinate, since the main ingredient is ℒ(Φ), which is an integral over all space-time. By contrast, the canonical approach, at least its classical formulation, seems to be based on the choice of a particular time coordinate which is needed to define the Hamiltonian function through an infinite dimensional Legendre transform.

However there are alternative formulations of the Hamiltonian structure of the dynamics of classical fields, which could be used as a starting point of a covariant canonical quantization.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] J. C., Baez, C. L., Rogers, Categorified Symplectic Geometry and the String Lie 2-algebra, Homology, Homotopy Appl. 12 (2010), no. 1, 221–236. arXiv:0901. 4721.Google Scholar
[2] C., Carathéodory, Variationsrechnung und partielle Differentialgleichungen erster Ordnung, Teubner, Leipzig (reprinted by Chelsea, New York, 1982); Acta litt. ac scient. univers., Hungaricae, Szeged, Sect. Math., 4 (1929), p. 193.Google Scholar
[3] E., Cartan, Leçons sur les invariants intégraux, Hermann, 1922.Google Scholar
[4] A., Clebsch, Ueber die zweite Variation vielfache Integralen, J. reine angew. Math. 56 (1859), 122–148.Google Scholar
[5] C., Crnkovic, E., Witten, Covariant description of canonical formalism in geometrical theories, in Three hundred years of gravitation (S. W., Hawking and W., Israel, eds.), Cambridge University Press, Cambridge, 1987, 676–684; E. Witten, Interacting field theory of open supertrings, Nucl. Phys. B 276 (1986), 291–324.Google Scholar
[6] P., Dedecker, Calcul des variations, formes différentielles et champs géodésiques, in Géométrie différentielle, Colloq. Intern. du CNRS LII, Strasbourg 1953, Publ. du CNRS, Paris, 1953, p. 17–34; On the generalization of symplectic geometry to multiple integrals in the calculus of variations, in Differential Geometrical Methods in Mathematical Physics, eds. K. Bleuler and A. Reetz, Lect. Notes Maths. vol. 570, Springer-Verlag, Berlin, 1977, p. 395–456.Google Scholar
[7] T. De, Donder, Introduction à lathéorie des invariants intégraux, Bull. Acad. Roy.Belgique (1913), 1043–1073.Google Scholar
[8] T. De, Donder, Théorie invariantive du calcul des variations, Gauthiers-Villars, Paris, 1930.Google Scholar
[9] B. P., Dolan, K. P., Haugh, A co-variant approach to Ashtekar's canonical gravity, Class. Quant. Gravity, Vol. 14, N. 2, (1997), 477–488 (12).Google Scholar
[10] M., Forger, S. V., Romero, Covariant Poisson bracket in geometric field theory, Commun. Math. Phys. 256 (2005), 375–410.Google Scholar
[11] M., Forger, L., Gomes, Multisymplectic and polysymplectic structures on fiber bundles, preprint arXiv:0708.1586.
[12] P. L., García, Geometría simplética en la teoria de campos, Collect. Math. 19, 1–2, 73, 1968.Google Scholar
[13] P. L., García, A., Pérez-Rendón, Symplectic approach to the theory of quantized fields, I, Commun. Math. Phys. 13 (1969), 24–44 and —, II, Arch. Rational Mech. Anal. 43 (1971), 101–124.Google Scholar
[14] M.J., Gotay, J., Isenberg, J.E., Marsden (with the collaboraton of R., Montgomery, J., Śnyatycki, P.B., Yasskin), Momentum maps and classical relativistic fields, Part I/covariant field theory, preprint arXiv/physics/9801019
[15] K., Gawedski, On the generalization of the canonical formalism in the classical field theory, Rep. Math. Phys. No 4, Vol. 3 (1972), 307–326.Google Scholar
[16] H., Goldschmidt, S., Sternberg, The Hamilton–Cartan formalism in the calculus of variations, Ann. Inst. Fourier Grenoble 23, 1 (1973), 203–267.Google Scholar
[17] F., Hélein, Hamiltonian formalisms for multidimensional calculus of variations and perturbation theory, in Noncompact problems at the intersection of geometry, analysis, and topology, Contemp. Math., 350 (2004), 127–147.Google Scholar
[18] F., Hélein, The use of the covariant phase space on non nonlinear fields, in preparation.
[19] F., Hélein, J., Kouneiher, Covariant Hamiltonian formalism for the calculus of variations with several variables: Lepage–Dedecker versus De Donder–Weyl, Adv. Theor. Math. Phys. 8 (2004), 565–601.Google Scholar
[20] F., Hélein, J., Kouneiher, The notion of observable in the covariant Hamiltonian formalism for the calculus of variations with several variables, Adv. Theor. Math. Phys. 8 (2004), 735–777.Google Scholar
[21] C.G.J., Jacobi, Ueber die Reduction der Integration des partiellen Differentialgleichungen erster Ornung zwischen irgend einer Zahl Variabeln auf die Integration eines einzigen Systemes gewàhnlicher Differentialgleichungen, J. reine angew. Math. 17 (1837), 68–82.Google Scholar
[22] C.G.J., Jacobi, Zur Theorie des Variations-Rechnung und des Differential-Gleichungen, J. reine angew. Math. 17 (1837), 97–162.Google Scholar
[23] J., Kijowski, A finite dimensional canonical formalism in the classical field theory, Commun. Math. Phys. 30 (1973), 99–128.Google Scholar
[24] J., Kijowski, Multiphase spaces and gauge in the calculus of variations, Bull. de l'Acad. Polon. des Sci., Série sci. Math., Astr. et Phys. XXII (1974), 1219–1225.Google Scholar
[25] J., Kijowski, W., Szczyrba, A canonical structure for classical field theories, Commun. Math Phys. 46 (1976), 183–206.Google Scholar
[26] A.A., Kirillov, Geometric quantization,in Dynamical systems IV, V.I., Arnol'd, S.P., Novikov, eds., Springer-Verlag, 1990.Google Scholar
[27] L., Koenigsberger, Die Prinzipien der Mechanik für mehrere Variable, Sitzungsberichte Akad. Wiss. Berlin, Bd. XLVI, 14 nov. 1901, 1108; Die Prinzipien der Mechanik für mehrere unavhäangige Variable, J. Reine Angw. Math., Bd. 124 (1902), 202–277.Google Scholar
[28] Y., Kosmann-Schwarzbach, Les théorèmes de Noether – Invariance et lois de conservation au XXe siècle, Les éditions de l'Ecole Polytechnique, 2004.
[29] T., Lepage, Sur les champs géodésiques du calcul des variations, Bull. Acad. Roy. Belg., Cl. Sci. 27 (1936), 716–729, 1036–1046.Google Scholar
[30] E., Noether, Invariante Variationsprobleme, Nachrichten von der Königlichen Gesellschaft des Wissenschaften su Göttingen, Mathematisch-physikalische Kalsse, 1918, p. 235–257.
[31] R. E., Peierls, The commutation laws of relativistic field theory, Proc. Roy. Soc. London, Ser. A, Vol. 214, No. 1117 (1952), 143–157.Google Scholar
[32] Prange, , Die Hamilton–Jacobische Theorie für Doppelintegrale, Diss. Göttingen, 1915.
[33] H., Poincaré, Les méthodes nouvelles de la mécanique céleste, t. III, Paris, –Gauthier–Villars, 1899.Google Scholar
[34] E. G., Reyes, On covariant phase space and the variational bicomplex, Int. J. Theor. Phys., Vol. 43, No. 5 (2004), 1267–1286.Google Scholar
[35] C., Rovelli, A note on the foundation of relativistic mechanics – II: Covariant Hamiltonian general relativity, in Topics in Mathematical Physics, General Relativity and Cosmology, H, Garcia-Compean, B, Mielnik, M, Montesinos, M, Przanowski editors, pg 397, (World Scientific, Singapore 2006). arXiv:grqc/0202079Google Scholar
[36] H., Rund, The Hamilton–Jacobi theory in the calculus of variations, its role in mathematics and physics, Krieger Pub. 1973.Google Scholar
[37] I., Segal, Quantization of nonlinear systems, J. Math. Phys. vol. 1, N. 6 (1960), 468–488.Google Scholar
[38] J., Śnyatycki, Geometric quantization and quantum Mechanics, Appl. Math. Sci. 30, Springer-Verlag 1980.Google Scholar
[39] J.-M., Souriau, Structure des systèmes dynamiques, Dunod, Paris, 1970.Google Scholar
[40] F., Takens, A global formulation of the inverse problem of the calculus of variations, J. Diff. Geom. 14 (1979), 543–562.Google Scholar
[41] A.M., Vinogradov, The C-spectral sequence, Lagrangian formalism, and conservations laws, I and II, J. Math. Anal. Appl. 100 (1984), 1–40 and 41–129.Google Scholar
[42] L., Vitagliano, Secondary calculus and the covariant phase space, J. Geom. Phys. 59 (2009), no. 4, 426–447.Google Scholar
[43] L., Vitagliano, The Lagrangian–Hamiltonian Formalism for Higher Order Field Theories, J. Geom. Phys. 60 (2010), no. 6-8, 857–873. arXiv:0905.4580.Google Scholar
[44] L., Vitagliano, Partial Differential Hamiltonian Systems, preprint arXiv:0903.4528
[45] V., Volterra, Sulle equazioni differenziali che provengono da questiono di calcolo delle variazioni, Rend. Cont. Acad. Lincei, ser. IV, vol. VI, 1890, 42–54.Google Scholar
[46] V., Volterra, Sopra una estensione della teoria Jacobi–Hamilton del calcolo delle varizioni, Rend. Cont. Acad. Lincei, ser. IV, vol. VI, 1890, 127–138.Google Scholar
[47] H., Weyl, Geodesic fields in the calculus of variation for multiple integrals, Ann. Math. (3) 36 (1935), 607–629.Google Scholar
[48] G., Zuckerman, Action functional and global geometry, in Mathematical aspects of string theory, S. T., Yau, eds., Advanced Series in Mathematical Physics, vol 1, World Scientific, 1987, 259–284.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×