Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-14T22:53:20.310Z Has data issue: false hasContentIssue false

A sensorimotor alternative to coding is possible

Published online by Cambridge University Press:  28 November 2019

Paul Cisek*
Affiliation:
Department of Neuroscience, University of Montréal, Montréal, QCH3C 3J7, Canada. paul.cisek@umontreal.cawww.cisek.org/pavel

Abstract

If we abandon the coding metaphor in favor of models of the full behavioral loop, we need a way to dissect that loop into understandable pieces. I suggest that evolutionary data provide a solution. We can subdivide behavior into parallel sensorimotor subsystems by following the phylogenetic history of how those systems differentiated and specialized during our evolution, leading to promising ways of re-interpreting neural activity within the context of its pragmatic role in mediating interaction.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashby, W. R. (1965) Design for a brain: The origin of adaptive behaviour (Vol. 2). Chapman and Hall.Google Scholar
Brooks, R. A. (1991a) Intelligence without representation. Artificial Intelligence 47(1–3):139–59. doi:10.1016/0004-3702(91)90053-M.CrossRefGoogle Scholar
Churchland, M. M., Cunningham, J. P., Kaufman, M. T., Ryu, S. I. & Shenoy, K. V. (2010) Cortical preparatory activity: Representation of movement or first cog in a dynamical machine? Neuron 68(3):387400.CrossRefGoogle ScholarPubMed
Churchland, M. M. & Shenoy, K. V. (2007) Temporal complexity and heterogeneity of single-neuron activity in premotor and motor cortex. Journal of Neurophysiology 97(6):4235–57.CrossRefGoogle ScholarPubMed
Cisek, P. (1999) Beyond the computer metaphor: Behaviour as interaction. Journal of Consciousness Studies 6(11/12):125–42.Google Scholar
Cisek, P. (2006) Integrated neural processes for defining potential actions and deciding between them: A computational model. Journal of Neuroscience 26(38):9761–70.CrossRefGoogle ScholarPubMed
Cisek, P. (2007) Cortical mechanisms of action selection: the affordance competition hypothesis. Philosophical Transactions of the Royal Society B Biological Sciences 362(1485):1585–99.CrossRefGoogle ScholarPubMed
Cisek, P. (2019) Resynthesizing behavior through phylogenetic refinement. Attention Perception & Psychophysics. Available at: https://doi.org/10.3758/s13414-019-01760-1.CrossRefGoogle ScholarPubMed
Cisek, P. & Kalaska, J. F. (2010) Neural mechanisms for interacting with a world full of action choices. Annual Review of Neuroscience 33:269–98.CrossRefGoogle ScholarPubMed
Cisek, P. & Thura, D. (2018) Neural circuits for action selection. In: Reach-to-grasp behavior: Brain, behavior, and modelling across the life span, ed. Corbetta, D. & Santello, M., Ch. 5. Routledge.Google Scholar
Clark, A. (1997) Being there: Putting brain, body, and world together again. MIT Press.Google Scholar
Dewey, J. (1896) The reflex arc concept in psychology. Psychological Review 3(4), 357–70.CrossRefGoogle Scholar
Erlhagen, W. & Schoner, G. (2002) Dynamic field theory of movement preparation. Psychological Review 109(3):545–72.CrossRefGoogle Scholar
Finlay, B. L. & Uchiyama, R. (2015) Developmental mechanisms channeling cortical evolution. Trends in Neuroscience 38(2):6976.CrossRefGoogle ScholarPubMed
Gibson, J. J. (1979) The ecological approach to visual perception. Routledge.Google Scholar
Graziano, M. S. (2016) Ethological action maps: A paradigm shift for the motor cortex. Trends in Cognitive Sciences 20(2):121–32.CrossRefGoogle ScholarPubMed
Grossberg, S. (1973) Contour enhancement, short term memory, and constancies in reverberating neural networks. Studies in Applied Mathematics 52:213–57.CrossRefGoogle Scholar
Grossberg, S. (1978) A theory of human memory: Self-organization and performance of sensory-motor codes, maps, and plans. In: Progress in theoretical biology, Vol. 5, ed. Rosen, R. & Snell, F. M., pp. 233374. Academic Press.CrossRefGoogle Scholar
Hendriks-Jansen, H. (1996) Catching ourselves in the act: Situated activity, interactive emergence, evolution, and human thought. MIT Press.Google Scholar
Hinde, R. A. (1966) Animal behaviour: A synthesis of ethology and comparative psychology. McGraw-Hill.Google Scholar
Kaas, J. H. & Stepniewska, I. (2016) Evolution of posterior parietal cortex and parietal-frontal networks for specific actions in primates. Journal of Comparatice Neurology 524(3):595608.CrossRefGoogle ScholarPubMed
Lebedev, M. A. & Wise, S. P. (2001) Tuning for the orientation of spatial attention in dorsal premotor cortex. European Journal of Neuroscience 13(5):10021008.CrossRefGoogle ScholarPubMed
Leopold, D. A., Mitchell, J. F. & Freiwald, W. A. (2017) Evolved mechanisms of high-level visual perception in primates. In: Evolution of Nervous Systems (2nd edition), ed. Kaas, J., Vol. 3, pp. 203–35). Academic Press.CrossRefGoogle Scholar
Pastor-Bernier, A. & Cisek, P. (2011) Neural correlates of biased competition in premotor cortex. Journal of Neuroscience 31(19):7083–8.CrossRefGoogle ScholarPubMed
Piaget, J. (1963) The origins of intelligence in children. Norton.Google Scholar
Powers, W. T. (1973a) Behavior: The control of perception. Aldine.Google Scholar
Thura, D. & Cisek, P. (2014) Deliberation and commitment in the premotor and primary motor cortex during dynamic decision making. Neuron 81(6):1401–16.CrossRefGoogle ScholarPubMed
Thura, D. & Cisek, P. (2016) Modulation of premotor and primary motor cortical activity during volitional adjustments of speed-accuracy trade-offs. Journal of Neuroscience 36(3):938–56.CrossRefGoogle ScholarPubMed
Wise, S. P. (1985) The primate premotor cortex: Past, present, and preparatory. Annual Review of Neuroscience 8:119.CrossRefGoogle ScholarPubMed
Yoo, S. B. M. & Hayden, B. Y. (2018) Economic choice as an untangling of options into actions. Neuron 99(3):434–47.CrossRefGoogle ScholarPubMed