Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-28T14:24:55.238Z Has data issue: false hasContentIssue false

Beyond Neural Coding? Lessons from Perceptual Control Theory

Published online by Cambridge University Press:  28 November 2019

Xerxes D. Arsiwalla
Affiliation:
Institute for Bioengineering of Catalonia & Barcelona Institute for Science and Technology, 08019Barcelona, Spainx.d.arsiwalla@gmail.compverschure@ibecbarcelona.euhttps://specs-lab.com
Ruben Moreno Bote
Affiliation:
Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018Barcelona, Spainruben.moreno@upf.eduhttps://www.upf.edu/web/tcn Serra Húnter Fellow Programme, Universitat Pompeu Fabra, 08018Barcelona, Spain
Paul Verschure
Affiliation:
Institute for Bioengineering of Catalonia & Barcelona Institute for Science and Technology, 08019Barcelona, Spainx.d.arsiwalla@gmail.compverschure@ibecbarcelona.euhttps://specs-lab.com Catalan Institute for Advanced Studies, 08010Barcelona, Spain. https://specs-lab.com

Abstract

Pointing to similarities between challenges encountered in today's neural coding and twentieth-century behaviorism, we draw attention to lessons learned from resolving the latter. In particular, Perceptual Control Theory posits behavior as a closed-loop control process with immediate and teleological causes. With two examples, we illustrate how these ideas may also address challenges facing current neural coding paradigms.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Fiorillo, C. D., Kim, J. K. & Hong, S. Z. (2014) The meaning of spikes from the neuron's point of view: Predictive homeostasis generates the appearance of randomness. Frontiers in Computational Neuroscience 8:49.CrossRefGoogle ScholarPubMed
Gazzola, V. & Keysers, C. (2009) The observation and execution of actions share motor and somatosensory voxels in all tested subjects: single-subject analyses of unsmoothed fMRI data. Cerebral Cortex 19(6):1239–55.CrossRefGoogle ScholarPubMed
Gomez-Marin, A. (2017) Causal circuit explanations of behavior: Are necessity and sufficiency necessary and sufficient? In: Decoding neural circuit structure and function, ed. Çelik, A. & Wernet, M. F., pp. 283306. Springer. Available at: https://link.springer.com/chapter/10.1007/978-3-319-57363-2_11. [Accessed June 27, 2018.]CrossRefGoogle Scholar
Herreros, I., Arsiwalla, X. D. & Verschure, P. (2016) A forward model at Purkinje cell synapses facilitates cerebellar anticipatory control. Advances in Neural Information Processing Systems 29:3828–36.Google Scholar
Keysers, C., Kaas, J. H. & Gazzola, V. (2010) Somatosensation in social perception. Nature Reviews Neuroscience 11(6):417.CrossRefGoogle ScholarPubMed
Lake, B. M., Ullman, T. D., Tenenbaum, J. B. & Gershman, S. J. (2017) Building machines that learn and think like people. Behavioral and Brain Sciences 40:e253.CrossRefGoogle ScholarPubMed
Maffei, G., Herreros, I., Sanchez-Fibla, M., Friston, K. J. & Verschure, P. F. (2017) The perceptual shaping of anticipatory actions. Proceedings of the Royal Society B: Biological Sciences 284(1869):20171780.CrossRefGoogle ScholarPubMed
Powers, W. T. (1973b) Feedback: Beyond behaviorism. Science 179(4071):351–6.CrossRefGoogle Scholar
Suvrathan, A., Payne, H. L., & Raymond, J. L. (2016) Timing rules for synaptic plasticity matched to behavioral function. Neuron 92(5):959–67.CrossRefGoogle ScholarPubMed
Varela, F. J., Thompson, E. & Rosch, E. (1991) The embodied mind: Cognitive science and human experience. MIT Press.CrossRefGoogle Scholar
Verschure, P. F., Voegtlin, T. & Douglas, R. J. (2003) Environmentally mediated synergy between perception and behaviour in mobile robots. Nature 425(6958):620.CrossRefGoogle ScholarPubMed