Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-26T03:32:17.309Z Has data issue: false hasContentIssue false

Interactions of noradrenaline and cortisol and the induction of indelible memories

Published online by Cambridge University Press:  05 January 2017

René Hurlemann
Affiliation:
Department of Psychiatry, University of Bonn, 53105 Bonn, Germanyrenehurlemann@icloud.comwolfgang.maier@ukb.uni-bonn.dehttp://renehurlemann.squarespace.com/welcome/http://psychiatrie.uni-bonn.de/ Division of Medical Psychology, University of Bonn, 53105 Bonn, Germanydirk-scheele@gmx.de
Wolfgang Maier
Affiliation:
Department of Psychiatry, University of Bonn, 53105 Bonn, Germanyrenehurlemann@icloud.comwolfgang.maier@ukb.uni-bonn.dehttp://renehurlemann.squarespace.com/welcome/http://psychiatrie.uni-bonn.de/ German Center for Neurodegenerative Diseases (DZNE), 53175 Bonn, Germany
Dirk Scheele
Affiliation:
Department of Psychiatry, University of Bonn, 53105 Bonn, Germanyrenehurlemann@icloud.comwolfgang.maier@ukb.uni-bonn.dehttp://renehurlemann.squarespace.com/welcome/http://psychiatrie.uni-bonn.de/ Division of Medical Psychology, University of Bonn, 53105 Bonn, Germanydirk-scheele@gmx.de

Abstract

The glutamate amplifies noradrenergic effects (GANE) model emphasizes the role of focal glutamate–noradrenaline interactions in creating functional hotspots for prioritized processing of salient stimuli. Here, we briefly outline current evidence that synergistic action of noradrenaline and cortisol enables emotional stimuli to gain privileged access to amygdala–hippocampus circuits, eventually resulting in the formation of indelible memories and posttraumatic stress disorder (PTSD).

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bryant, R. A., McGrath, C. & Felmingham, K. L. (2013) The roles of noradrenergic and glucocorticoid activation in the development of intrusive memories. PLoS ONE 8(4):e62675. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23658640.Google Scholar
Buchanan, T. W. & Lovallo, W. R. (2001) Enhanced memory for emotional material following stress-level cortisol treatment in humans. Psychoneuroendocrinology 26(3):307–17. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11166493.Google Scholar
de Kloet, E. R., Joels, M. & Holsboer, F. (2005) Stress and the brain: From adaptation to disease. Nature Reviews Neuroscience 6(6):463–75. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15891777.CrossRefGoogle ScholarPubMed
de Quervain, D. J., Roozendaal, B., Nitsch, R. M., McGaugh, J. L. & Hock, C. (2000) Acute cortisone administration impairs retrieval of long-term declarative memory in humans. Nature Neuroscience 3(4):313–14. Available at: http://www.ncbi.nlm.nih.gov/pubmed/10725918.Google Scholar
Ehrlich, I., Humeau, Y., Grenier, F., Ciocchi, S., Herry, C. & Luthi, A. (2009) Amygdala inhibitory circuits and the control of fear memory. Neuron 62(6):757–71. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19555645.Google Scholar
Goossens, L., Kukolja, J., Onur, O. A., Fink, G. R., Maier, W., Griez, E., Schruers, K. & Hurlemann, R. (2009) Selective processing of social stimuli in the superficial amygdala. Human Brain Mapping 30(10):3332–38. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19347877.Google Scholar
Hurlemann, R. (2006) Noradrenergic control of emotion-induced amnesia and hypermnesia. Reviews in the Neurosciences 17(5):525–32. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17180877.Google Scholar
Hurlemann, R. (2008) Noradrenergic–glucocorticoid mechanisms in emotion-induced amnesia: From adaptation to disease. Psychopharmacology 197(1):1323. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18038126.Google Scholar
Hurlemann, R., Hawellek, B., Matusch, A., Kolsch, H., Wollersen, H., Madea, B., Vogeley, K., Maier, W. & Dolan, R. J. (2005) Noradrenergic modulation of emotion-induced forgetting and remembering. Journal of Neuroscience 25(27):6343–49. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16000624.Google Scholar
Hurlemann, R., Matusch, A., Hawellek, B., Klingmuller, D., Kolsch, H., Maier, W. & Dolan, R. J. (2007a) Emotion-induced retrograde amnesia varies as a function of noradrenergic–glucocorticoid activity. Psychopharmacology 194(2):261–69. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17588225.Google Scholar
Hurlemann, R., Rehme, A. K., Diessel, M., Kukolja, J., Maier, W., Walter, H. & Cohen, M. X. (2008) Segregating intra-amygdalar responses to dynamic facial emotion with cytoarchitectonic maximum probability maps.1 Journal of Neuroscience Methods 172(1):1320. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18486975.Google Scholar
Hurlemann, R., Wagner, M., Hawellek, B., Reich, H., Pieperhoff, P., Amunts, K., Oros-Peusquens, A. M., Shah, N. J., Maier, W. & Dolan, R. J. (2007b) Amygdala control of emotion-induced forgetting and remembering. Neuropsychologia 45(5):877–84. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17027866.Google Scholar
Hurlemann, R., Walter, H., Rehme, A. K., Kukolja, J., Santoro, S. C., Schmidt, C., Schnell, K., Musshoff, F., Keysers, C., Maier, W., Kendrick, K. M. & Onur, O. A. (2010) Human amygdala reactivity is diminished by the beta-noradrenergic antagonist propranolol. Psychological Medicine 40(11):1839–48. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20102667.Google Scholar
Karst, H., Berger, S., Turiault, M., Tronche, F., Schütz, G. & Joëls, M. (2005) Proceedings of the National Academy of Sciences of the United States of America 102(52):19204–207. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16361444.CrossRefGoogle Scholar
Kukolja, J., Klingmuller, D., Maier, W., Fink, G. R. & Hurlemann, R. (2011) Noradrenergic–glucocorticoid modulation of emotional memory encoding in the human hippocampus. Psychological Medicine 41(10):2167–76. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21375794.Google Scholar
Kukolja, J., Schlapfer, T. E., Keysers, C., Klingmuller, D., Maier, W., Fink, G. R. & Hurlemann, R. (2008) Modeling a negative response bias in the human amygdala by noradrenergic–glucocorticoid interactions. Journal of Neuroscience 28(48):12868–76. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19036981.Google Scholar
McEwen, B. S., Bowles, N. P., Gray, J. D., Hill, M. N., Hunter, R. G., Karatsoreos, I. N. & Nasca, C. (2015) Mechanisms of stress in the brain. Nature Neuroscience 18(10):1353–63. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26404710.CrossRefGoogle ScholarPubMed
Merz, C. J., Tabbert, K., Schweckendiek, J., Klucken, T., Vaitl, D., Stark, R. & Wolf, O. T. (2010) Investigating the impact of sex and cortisol on implicit fear conditioning with fMRI. Psychoneuroendocrinology 35(1):3346. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19683399.Google Scholar
Mihov, Y., Mayer, S., Musshoff, F., Maier, W., Kendrick, K. M. & Hurlemann, R. (2010) Facilitation of learning by social–emotional feedback in humans is beta-noradrenergic-dependent. Neuropsychologia 48(10):3168–72. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20457167.Google Scholar
Montoya, E. R., Bos, P. A., Terburg, D., Rosenberger, L. A. & van Honk, J. (2014) Cortisol administration induces global down-regulation of the brain's reward circuitry. Psychoneuroendocrinology 47:3142. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25001954.Google Scholar
Nicholson, E. L., Bryant, R. A. & Felmingham, K. L. (2014) Interaction of noradrenaline and cortisol predicts negative intrusive memories in posttraumatic stress disorder. Neurobiology of Learning and Memory 112:204–11. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24296460.CrossRefGoogle ScholarPubMed
Onur, O. A., Walter, H., Schlaepfer, T. E., Rehme, A. K., Schmidt, C., Keysers, C., Maier, W. & Hurlemann, R. (2009) Noradrenergic enhancement of amygdala responses to fear. Social Cognitive and Affective Neuroscience 4(2):119–26. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19246474.Google Scholar
Patin, A. & Hurlemann, R. (2011) Modulating amygdala responses to emotion: Evidence from pharmacological fMRI. Neuropsychologia 49(4):706–17. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20933529.Google Scholar
Strange, B. A., Hurlemann, R. & Dolan, R. J. (2003) An emotion-induced retrograde amnesia in humans is amygdala- and beta-adrenergic-dependent. Proceedings of the National Academy of Sciences of the United States of America 100(23):13626–31. Available at: http://www.ncbi.nlm.nih.gov/pubmed/14595032.CrossRefGoogle ScholarPubMed
van Stegeren, A. H., Roozendaal, B., Kindt, M., Wolf, O. T. & Joels, M. (2010) Interacting noradrenergic and corticosteroid systems shift human brain activation patterns during encoding. Neurobiology of Learning and Memory 93(1):5665. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19695335.Google Scholar
Vogel, S., Klumpers, F., Krugers, H. J., Fang, Z., Oplaat, K. T., Oitzl, M. S., Joels, M. & Fernandez, G. (2015b) Blocking the mineralocorticoid receptor in humans prevents the stress-induced enhancement of centromedial amygdala connectivity with the dorsal striatum. Neuropsychopharmacology 40(4):947–56. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25355243.Google Scholar