Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-26T03:41:41.407Z Has data issue: false hasContentIssue false

Contemplating the GANE model using an extreme case paradigm

Published online by Cambridge University Press:  05 January 2017

Ronny Geva*
Affiliation:
Department of Psychology, Gonda Brain Research Center, Bar-Ilan University, Ramat Gan 5290002, Israelronny.geva@biu.ac.il

Abstract

Early experiences play a crucial role in programming brain function, affecting selective attention, learning, and memory. Infancy literature suggests an extension of the GANE (glutamate amplifies noradrenergic effects) model to conditions with minimal priority-map inputs, yet suggests qualifications by noting that its efficacy is increased when tonic levels of arousal are maintained in an optimal range, in manners that are age and exposure dependent.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bouret, S. & Richmond, B. J. (2015) Sensitivity of locus ceruleus neurons to reward value for goal-directed actions. The Journal of Neuroscience 35(9):4005–14. doi: 10.1523/jneurosci.4553-14.2015.Google Scholar
Gardner, J. M. & Karmel, B. Z. (1983) Attention and arousal in preterm and full-term neonates. Infants born at risk: Behavior and development, ed. Field, T. & Sostek, A., pp. 6998. Grune & Stratton.Google Scholar
Gardner, J. M. & Karmel, B. Z. (1984) Arousal effects on visual preferences in neonates. Developmental Psychology 20(3):374–77. doi: 10.1037/0012-1649.20.3.374.Google Scholar
Geva, R., Eshel, R., Leitner, Y., Valevski, A. F. & Harel, S. (2006) Neuropsychological outcome of children with intrauterine growth restriction: A 9-year prospective study. Pediatrics 118(1):91100. doi: 10.1542/peds.2005-2343.Google Scholar
Geva, R. & Feldman, R. (2008) A neurobiological model for the effects of early brainstem functioning on the development of behavior and emotion regulation in infants: Implications for prenatal and perinatal risk. Journal of Child Psychology and Psychiatry 49(10):1031–41. doi: 10.1111/j.1469-7610.2008.01918.x.Google Scholar
Geva, R., Gardner, J. M. & Karmel, B. Z. (1999) Feeding-based arousal effects on visual recognition memory in early infancy. Developmental Psychology 35(3):640–50.Google Scholar
Geva, R., Yaron, H. & Kuint, J. (2013) Neonatal sleep predicts attention orienting and distractibility. Journal of Attention Disorders 20(2):138–50.Google Scholar
Howells, F. M., Stein, D. J. & Russell, V. A. (2010) Perceived mental effort correlates with changes in tonic arousal during attentional tasks. Behavioral and Brain Functions 6:39. doi: 10.1186/1744-9081-6-39.Google Scholar
Kalpachidou, T., Raftogianni, A., Melissa, P., Kollia, A.-M., Stylianopoulou, F. & Stamatakis, A. (2015) Effects of a neonatal experience involving reward through maternal contact on the noradrenergic system of the rat prefrontal cortex. Cerebral Cortex 26(9):3866–77. doi: 10.1093/cercor/bhv192.CrossRefGoogle ScholarPubMed
Kendrick, K. M., Levy, F. & Keverne, E. B. (1992) Changes in the sensory processing of olfactory signals induced by birth in sheep. Science 256(5058):833–36.Google Scholar
Kimura, F. & Nakamura, S. (1985) Locus coeruleus neurons in the neonatal rat: Electrical activity and responses to sensory stimulation. Developmental Brain Research 23(2):301305. Available at: http://dx.doi.org/10.1016/0165-3806(85)90055-0.Google Scholar
Kuhl, P. K. (2007) Is speech learning “gated” by the social brain? Developmental Science 10(1):110–20. doi: 10.1111/j.1467-7687.2007.00572.x.Google Scholar
Kuhl, P. K., Williams, K. A., Lacerda, F., Stevens, K. N. & Lindblom, B. (1992) Linguistic experience alters phonetic perception in infants by 6 months of age. Science 255(5044):606608. doi: 10.1126/science.1736364.Google Scholar
Moriceau, S. & Sullivan, R. M. (2004) Unique neural circuitry for neonatal olfactory learning. The Journal of Neuroscience 24(5):1182–89. doi: 10.1523/jneurosci.4578-03.2004.Google Scholar
Nakamura, S., Kimura, F. & Sakaguchi, T. (1987) Postnatal development of electrical activity in the locus ceruleus. Journal of Neurophysiology 58(3):510–24.Google Scholar
Nakamura, S. & Sakaguchi, T. (1990). Development and plasticity of the locus coeruleus: A review of recent physiological and pharmacological experimentation. Progress in Neurobiology 34(6):505–26. Available at: http://dx.doi.org/10.1016/0301-0082(90)90018-C.Google Scholar
Rajkowski, J., Kubiak, P. & Aston-Jones, G. (1994) Locus coeruleus activity in monkey: Phasic and tonic changes are associated with altered vigilance. Brain Research Bulletin 35 (5/6):607–16. Available at: http://dx.doi.org/10.1016/0361-9230(94)90175-9.Google Scholar
Rangel, S. & Leon, M. (1995) Early odor preference training increases olfactory bulb norepinephrine. Developmental Brain Research 85(2):187–91. Available at: http://dx.doi.org/10.1016/0165-3806(94)00211-H.Google Scholar
Sara, S. J. (2009) The locus coeruleus and noradrenergic modulation of cognition. Nature Reviews Neuroscience 10(3):211–23.Google Scholar
Selden, N. R. W., Cole, B. J., Everitt, B. J. & Robbins, T. W. (1990) Damage to ceruleo-cortical noradrenergic projections impairs locally cued but enhances spatially cued water maze acquisition. Behavioural Brain Research 39(1):2951. Available at: http://dx.doi.org/10.1016/0166-4328(90)90119-Y.Google Scholar
Sterley, T. L., Howells, F. M. & Russell, V. A. (2013) Maternal separation increases GABA(A) receptor-mediated modulation of norepinephrine release in the hippocampus of a rat model of ADHD, the spontaneously hypertensive rat. Brain Research 1497:2331. doi: 10.1016/j.brainres.2012.12.029.Google Scholar
Vankov, A., Hervé-Minvielle, A. & Sara, S. J. (1995) Response to novelty and its rapid habituation in locus coeruleus neurons of the freely exploring rat. European Journal of Neuroscience 7(6):1180–87. doi: 10.1111/j.1460-9568.1995.tb01108.x.Google Scholar