Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-13T21:14:25.228Z Has data issue: false hasContentIssue false

Speech prosody, reward, and the corticobulbar system: An integrative perspective

Published online by Cambridge University Press:  17 December 2014

Carmelo M. Vicario*
Affiliation:
School of Psychology, Bangor University, Bangor, Gwynedd LL57 2AS, United Kingdom. carmelo.vicario@uniroma1.itc.m.vicario@bangor.ac.uk ttp://www.bangor.ac.uk/psychology/people/profiles/carmelo_vicario.php.en

Abstract

Speech prosody is essential for verbal communication. In this commentary I provide an integrative overview, arguing that speech prosody is subserved by the same anatomical and neurochemical mechanisms involved in the processing of reward/affective outcomes.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alhadeff, A. L., Rupprecht, L. E. & Hayes, M. R. (2012) GLP-1 neurons in the nucleus of the solitary tract project directly to the ventral tegmental area and nucleus accumbens to control for food intake. Endocrinology 153:647–58.CrossRefGoogle Scholar
Alipour, M., Chen, Y. & Jürgens, U. (2002) Anterograde projections of the motorcortical tongue area in the saddle-back tamarin (Saguinus fuscicollis). Brain and Behavioral Evolution 60:101–16.Google Scholar
Bédard, C., Wallman, M. J., Pourcher, E., Gould, P. V., Parent, A. & Parent, M. (2011) Serotonin and dopamine striatal innervation in Parkinson's disease and Huntington's chorea. Parkinsonism Related Disorders 17:593–98.CrossRefGoogle ScholarPubMed
Brück, C., Wildgruber, D., Kreifelts, B., Krüger, R. & Wächter, T. (2011) Effects of subthalamic nucleus stimulation on emotional prosody comprehension in Parkinson's disease. PLOS ONE 6:e19140.Google Scholar
Creed, M. C., Hamani, C., Bridgman, A., Fletcher, P. J. & Nobrega, J. N. (2012) Contribution of decreased serotonin release to the antidyskinetic effects of deep brain stimulation in a rodent model of tardive dyskinesia: Comparison of the subthalamic and entopeduncular nuclei. Journal of Neuroscience 32:9574–81.CrossRefGoogle Scholar
Das, S. & Fowler, S. C. (1995) Acute and subchronic effects of clozapine on licking in rats: Tolerance to disruptive effects on number of licks, but no tolerance to rhythm slowing. Psychopharmacology (Berlin) 120:249–55.CrossRefGoogle ScholarPubMed
De Letter, M., Santens, P., Estercam, I., Van Maele, G., De Bodt, M., Boon, P. & Van Borsel, J. (2007) Levodopa-induced modifications of prosody and comprehensibility in advanced Parkinson's disease as perceived by professional listeners. Clinical Linguistic Phonology 21:783–91.Google Scholar
Fiorillo, C. D. (2013) Two dimensions of value: Dopamine neurons represent reward but not aversiveness. Science 341:546–49.CrossRefGoogle Scholar
French, C. A., Jin, X., Campbell, T. G., Gerfen, E., Groszer, M., Fisher, S. E. & Costa, R. M. (2012) An aetiological Foxp2 mutation causes aberrant striatal activity and alters plasticity during skill learning. Molecular Psychiatry 17:1077–85.Google Scholar
Frith, C. (2009) Role of facial expressions in social interactions. Philosophical Transactions of the Royal Society B: Biological Sciences 364:3453–58.Google Scholar
Gale, J. T., Lee, K. H., Amirnovin, R., Roberts, D. W., Williams, Z. M., Blaha, C. D. & Eskandar, E. N. (2013) Electrical stimulation-evoked dopamine release in the primate striatum. Stereotactic Functions Neurosurgery 91(6):355–63. doi: 10.1159/000351523.CrossRefGoogle ScholarPubMed
Ghanbarian, E. & Motamedi, F. (2013) Ventral tegmental area inactivation suppresses the expression of CA1 long term potentiation in anesthetized rat. PLOS ONE 8:e58844.CrossRefGoogle ScholarPubMed
Granata, A. R. & Woodruff, G. N. (1982) Dopaminergic mechanisms in the nucleus tractus solitarius and effects on blood pressure. Brain Research Bulletin 8:483–88.CrossRefGoogle ScholarPubMed
Huang, Y. C. & Hessler, N. A. (2008) Social modulation during songbird courtship potentiates midbrain dopaminergic neurons. PLOS ONE 3:e3281.Google Scholar
Laffin, J. J., Raca, G., Jackson, C. A., Strand, E. A., Jakielski, K. J. & Shriberg, L. D. (2012) Novel candidate genes and regions for childhood apraxia of speech identified by array comparative genomic hybridization. Genetic Medicine 14:928–36.Google Scholar
Lam, D. D., Zhou, L., Vegge, A., Xiu, P. Y., Christensen, B. T., Osundiji, M. A., Yueh, C. Y., Evans, M. L. & Heisler, L. K. (2009) Distribution and neurochemical characterization of neurons within the nucleus of the solitary tract responsive to serotonin agonist-induced hypophagia. Behavioral Brain Research 196:139–43.Google Scholar
Lhommée, E., Klinger, H., Thobois, S., Schmitt, E., Ardouin, C., Bichon, A., Kistner, A., Fraix, V., Xie, J., Aya, K. M., Chabardès, S., Seigneuret, E., Benabid, A. L., Mertens, P., Polo, G., Carnicella, S., Quesada, J. L., Bosson, J. L., Broussolle, E. Pollak, P. & Krack, P. (2012) Subthalamic stimulation in Parkinson's disease: Restoring the balance of motivated behaviours. Brain 135:1463–77.Google Scholar
Miller, R. L., Stein, M. K. & Loewy, A. D. (2011) Serotonergic inputs to FoxP2 neurons of the pre-locus coeruleus and parabrachial nuclei that project to the ventral tegmental area. Neuroscience 193:229–40.Google Scholar
Nuckolls, A. L., Worley, C., Leto, C., Zhang, H., Morris, J. K. & Stanford, J. A. (2012) Tongue force and tongue motility are differently affected by unilateral vs. bilateral nigrostriatal dopamine depletion in rats. Behavioral Brain Research 234:343–48.CrossRefGoogle ScholarPubMed
Potulska, A., Friedman, A., Królicki, L. & Spychala, A. (2003) Swallowing disorders in Parkinson's disease. Parkinsonism Related Disorders 9:349453.CrossRefGoogle ScholarPubMed
Raul, L. (2003) Serotonin2 receptors in the nucleus tractus solitarius: Characterization and role in the baroreceptor reflex arc. Cell Molecular Neurobiology 23:709–26.Google Scholar
Salvante, K. G., Racke, D. M., Campbell, C. R. & Sockman, K. W. (2010) Plasticity in singing effort and its relationship with monoamine metabolism in the songbird telencephalon. Developmental Neurobiology 70:4157.Google Scholar
Shriberg, L. D., Ballard, K. J., Tomblin, J. B., Duffy, J. R., Odell, K. H. & Williams, C. A. (2006) Speech, prosody, and voice characteristics of a mother and daughter with a 7;13 translocation affecting FOXP2. Journal of Speech Language Hearing Research 49:500–25.Google Scholar
Sidtis, J. J. & Van Lancker Sidtis, D. (2003) A neurobehavioral approach to dysprosody. Seminars in Speech and Language 24:93105.Google Scholar
Simon, S. A., de Araujo, I. E., Gutierrez, R. & Nicolelis, M. A. (2006) The neural mechanisms of gustation: A distributed processing code. Nature Reviews Neuroscience 7:890901.CrossRefGoogle ScholarPubMed
Skodda, S. (2012) Effect of deep brain stimulation on speech performance in Parkinson's Disease. Parkinson's Disease 2012 (Article No. 850596): 110. Available at: http://dx.doi.org/10.1155/2012/850596 Google Scholar
Tokita, K., Karadi, Z., Shimura, T. & Yamamoto, T. (2004) Centrifugal inputs modulate taste aversion learning associated parabrachial neuronal activities. Journal of Neurophysiology 92:265–79.Google Scholar
Van Lancker Sidtis, D., Pachana, N., Cummings, J. L. & Sidtis, J. J. (2006) Dysprosodic speech following basal ganglia insult: Toward a conceptual framework for the study of the cerebral representation of prosody. Brain and Language 97:135–53.Google Scholar
Vicario, C. M. (2013a) FOXP2 gene and language development: The molecular substrate of the gestural-origin theory of speech? Frontiers in Behavioral Neuroscience 7:99.CrossRefGoogle ScholarPubMed
Vicario, C. M. (2013b) Inborn mechanisms of food preference and avoidance: The role of polymorphisms in neuromodulatory systems. Frontiers in Molecular Neuroscience 6:16.Google Scholar
Vicario, C. M. (2013c) Uncovering the neurochemistry of reward and aversiveness. Frontiers in Molecular Neuroscience.6:41.Google Scholar