Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T16:46:09.748Z Has data issue: false hasContentIssue false

Unpredictable homeodynamic and ambient constraints on irrational decision making of aneural and neural foragers

Published online by Cambridge University Press:  19 March 2019

Kevin B. Clark*
Affiliation:
Research and Development Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073; Felidae Conservation Fund, Mill Valley, CA 94941; Campus Champions, Extreme Science and Engineering Discovery Environment (XSEDE), National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL 61801; Expert Network, Penn Center for Innovation, University of Pennsylvania, Philadelphia, PA 19104; Virus Focus Group, NASA Astrobiology Institute, NASA Ames Research Center, Moffett Field, CA 94035. kbclarkphd@yahoo.comwww.linkedin.com/pub/kevin-clark/58/67/19a

Abstract

Foraging for nutritional sustenance represents common significant learned/heritable survival strategies evolved for phylum-diverse cellular life on Earth. Unicellular aneural to multicellular neural foragers display conserved rational or irrational decision making depending on outcome predictions for noise-susceptible real/illusory homeodynamic and ambient dietary cues. Such context-dependent heuristic-guided foraging enables optimal, suboptimal, or fallacious decisions that drive organismal adaptation, health, longevity, and life history.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anreiter, I., Kramer, J. M. & Sokolowski, M. B. (2017) Epigenetic mechanisms modulate differences in Drosophilia foraging behavior. Proceedings of the National Academy of Sciences USA 114(47):12518–23.Google Scholar
Beekman, M. & Latty, T. (2015) Brainless but multi-headed: Decision making by the acellular slime mould Physarum polycephalum. Journal of Molecular Biology 427(23):3734–43.Google Scholar
Bekenstein, J. D. (2004) Black holes and information theory. Contemporary Physics 45(1):3143.Google Scholar
Busemeyer, J. R. & Bruza, P. (2011) Quantum models of cognition and decision making. Cambridge University Press.Google Scholar
Cao, M. & Goodrich-Blair, H. (2017) Ready or not: Microbial adaptive responses in dynamic symbiosis environments. Journal of Bacteriology 199(15):e0088316.Google Scholar
Clark, K. B. (2010a) Arrhenius-kinetics evidence for quantum tunneling in microbial “social” decision rates. Communicative & Integrative Biology 3(6):540–44.Google Scholar
Clark, K. B. (2010b) Bose-Einstein condensates form in heuristics learned by ciliates deciding to signal ‘social’ commitments. BioSystems 99(3):167–78.Google Scholar
Clark, K. B. (2010c) On classical and quantum error-correction in ciliate mate selection. Communicative & Integrative Biology 3(4):374–78.Google Scholar
Clark, K. B. (2012) Social biases determine spatiotemporal sparseness of ciliate mating heuristics. Communicative & Integrative Biology 5(1):311.Google Scholar
Clark, K. B. (2013a) Biotic activity of Ca2+-modulating nontraditional antimicrobial and -viral agents. Frontiers in Microbiology 4:381.Google Scholar
Clark, K. B. (2013b) Ciliates learn to diagnose and correct classical error syndromes in mating strategies. Frontiers in Microbiology 4:229.Google Scholar
Clark, K. B. (2015) Insight and analysis problem solving in microbes to machines. Progress in Biophysics and Molecular Biology 119:183–93.Google Scholar
Clark, K. B. & Hassert, D. L. (2013) Undecidability and opacity of metacognition in animals and humans. Frontiers in Psychology 4:171.Google Scholar
Dussutour, A., Latty, T., Beekman, M. & Simpson, S. J. (2010) Amoeboid organism solves complex nutritional challenges. Proceedings of the National Academy of Sciences USA 107(10):4607–11.Google Scholar
Eisenstein, E. M. & Eisenstein, D. (2006) A behavioral homeostasis theory of habituation and sensitization: II. Further developments and predictions. Reviews in Neuroscience 17:533–57.Google Scholar
Gödel, K. (1931) Über formal unentscheidbare Säze der Principia Mathematica und verwandter Systeme I. Monatshefte für Mathematik und Physik 38:173–98.Google Scholar
Gowdy, J. & Krall, L. (2016) The economic origins of ultrasociality. Behavioral and Brain Sciences 39:e92.Google Scholar
Hillesland, K. L., Velicer, G. J. & Lenski, R. E. (2009) Experimental evolution of a microbial predator's ability to find prey. Proceedings of the Royal Society B: Biological Sciences 276(1656):459–67.Google Scholar
Jobson, M. A., Jordan, J. M., Sandrof, M. A., Hibshman, J. D., Lennox, A. L. & Baugh, L. R. (2015) Transgenerational effects of early life starvation on growth, reproduction, and stress resistance in Caenorhabditis elegans. Genetics 201(1):201–12.Google Scholar
Ladyman, J., Presnell, S., Short, A. J. & Groisman, B. (2007) The connection between logical and thermodynamic irreversibility. Studies in History and Philosophy of Modern Physics 38:5879.Google Scholar
Latty, T. & Beekman, M. (2011a) Irrational decision-making in an amoeboid organism: Transitivity and context-dependent preferences. Proceedings of the Royal Society B: Biological Sciences 278(1703):307–12.Google Scholar
Latty, T. & Beekman, M. (2011b) Speed-accuracy trade-offs during foraging decisions in the acellular slime mould physarum polycephalum. Proceedings of the Royal Society B: Biological Sciences 278(1705):539–45.Google Scholar
López Garcia de Lomana, A., Kaur, A., Turkarsian, S., Beer, K. D., Mast, F. D., Smith, J. J., Aitchison, J. D., & Baliga, N.S. (2017) Adaptive prediction emerges over short evolutionary time scales. Genome and Biological Evolution 9(6):1616–23.Google Scholar
Lumey, L. H., Stein, A. D. & Susser, E. (2011) Prenatal famine and adult health. Annual Review of Public Health 32:237–62.Google Scholar
Meyer, B., Ansorge, C. & Nakagaki, T. (2017) The role of noise in self-organized decision making by the true slime mold Physarum polycephalum. PLoS ONE 12(3):e0172933.Google Scholar
Nisbett, R. & Ross, L. (1980)Human inference: Strategies and shortcomings of social judgment. Prentice Hall.Google Scholar
Reichert, M.B., Christiansen, I.C., Seiter, M. & Schausberger, P. (2017) Transgenerational loss and recovery of early learning ability in foraging predatory mites. Experimental and Applied Acarology 71(3):243–58.Google Scholar
Trewavas, A. (2003) Aspects of plant intelligence. Annals of Botany 92:120.Google Scholar
Tversky, A. & Kahneman, D. (1974) Judgment under uncertainty: Heuristics and biases. Science 185:1124–31.Google Scholar
Vaiseman, A. M. (2014) Early-life nutritional programming of longevity. Journal of Developmental Origins of Health and Disease 5(5):325–38.Google Scholar
Werner, G. D. A., Strassmann, J. E., Ivens, A. B. F., Engelmoer, D. J. P., Verbruggen, E., Queller, D. C., Noë, R., Johnson, N. C., Hammerstein, P. & Kiers, E. T. (2014) Evolution of microbial markets. Proceedings of the National Academy of Sciences USA 111(4):1237–44.Google Scholar
Wolf, D. M., Vazirani, V. V. & Arkin, A. P. (2005) Diversity in times of adversity: Probabilistic strategies in microbial survival games. Journal of Theoretical Biology 234(2):227–53.Google Scholar