No CrossRef data available.
Published online by Cambridge University Press: 17 April 2009
The Jacobson group of a ring R (denoted by = (R)) is the normal subgroup of the group of units of R (denoted by G(R)) obtained by adding 1 to the Jacobson radical of R (J(R)). Coleman and Easdown in 2000 showed that the Jacobson group is complemented in the group of units of any finite commutative ring and also in the group of units a n × n matrix ring over integers modulo ps, when n = 2 and p = 2, 3, but it is not complemented when p ≥ 5. In 2004 Wilcox showed that the answer is positive also for n = 3 and p = 2, and negative in all the remaining cases. In this paper we offer a different proof for Wilcox's results and also generalise the results to a matrix ring over an arbitrary finite commutative ring. We show this by studying the generators and relations that define a matrix ring over a field. We then proceed to examine the complementation of the Jacobson group in the matrix rings over graded rings and prove that complementation depends only on the 0-th grade.