No CrossRef data available.
Article contents
TANGENT BUNDLES, MONOIDAL THEORIES AND WEIL ALGEBRAS
Published online by Cambridge University Press: 03 May 2018
Abstract
An abstract is not available for this content so a preview has been provided. As you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Keywords
MSC classification
- Type
- Abstracts of Australasian PhD Theses
- Information
- Copyright
- © 2018 Australian Mathematical Publishing Association Inc.
References
Barr, M. and Wells, C., ‘Toposes, triples, and theories’, in: Grundlehren der Mathematischen Wissenschaften (Springer, New York, 1985).Google Scholar
Bondy, A. J. and Murty, U. S. R., Graph Theory with Applications (Wiley, New York, 1991).Google Scholar
Cockett, R. and Cruttwell, G., ‘Differential structure, tangent structure and synthetic differential geometry’, Appl. Categ. Structures
22(2) (2014), 331–417.Google Scholar
Hitchin, N., Differentiable Manifolds, Oxford UK Course C3.2b Lecture Notes (Oxford University, 2012), available at https://people.maths.ox.ac.uk/hitchin/hitchinnotes/manifolds2012.pdf.Google Scholar
Kolar, I., Michor, P. W. and Slovak, J., Natural Operations in Differential Geometry (Springer, Berlin Heidelberg, 2010).Google Scholar
Weil, A., ‘Théorie des points proches sur les variétés differentielles’, in: Colloque de Topologie et Géométrie Différentielle, Strasbourg, 1953 (Centre National de la Recherche Scientifique, Paris, 1953), 111–117.Google Scholar
You have
Access