Published online by Cambridge University Press: 20 November 2018
Results of a representation-theoretic nature have played a major role in topos theory since the beginnings of the subject. For example, Deligne's theorem on coherent toposes, which says that every coherent topos has a continuous embedding into a topos of the form SetI for a discrete set I, is a typical result in the representation theory of toposes. (A continuous functor between toposes is the left adjoint of a geometric morphism. For Grothendieck toposes, it is exactly the same as a continuous functor between them, considered as sites with their canonical topologies. By a continuous functor between sites on left exact categories, we mean a left exact functor taking covers to covers.)
A representation-like result for toposes typically asserts that a topos that satisfies some abstract conditions is related to a topos of some concrete kind; the relation between them is usually an embedding of the first topos in the second (concrete) one, for which the embedding satisfies some additional properties (fullness, etc.).