1 Introduction
Schur-like functions are a new and flourishing area since the discovery of quasisymmetric Schur functions in 2011 [Reference Haglund, Luoto, Mason and van Willigenburg11], which led to numerous other similar functions being discovered, for example, [Reference Aliniaeifard, Li and van Willigenburg1, Reference Assaf and Searles4, Reference Berg, Bergeron, Saliola, Serrano and Zabrocki6, Reference Campbell, Feldman, Light, Shuldiner and Xu10, Reference Luoto, Mykytiuk and van Willigenburg14–Reference Mason and Remmel17]. In essence, Schur-like functions are functions that refine the ubiquitous Schur functions and reflect many of their properties, such as their combinatorics [Reference Allen, Hallam and Mason2, Reference Bessenrodt, Luoto and van Willigenburg9], their representation theory [Reference Bardwell and Searles5, Reference Berg, Bergeron, Saliola, Serrano and Zabrocki7, Reference Searles21, Reference Tewari and van Willigenburg22], and in the case of quasisymmetric Schur functions have already been applied to resolve conjectures [Reference Lauve and Mason13]. Of the various Schur-like functions to arise after the quasisymmetric Schur functions, two were naturally related to them: the dual immaculate functions [Reference Berg, Bergeron, Saliola, Serrano and Zabrocki6] and the row-strict quasisymmetric Schur functions [Reference Mason and Remmel17]. Recently, a fourth basis that interpolates between these latter two bases, the row-strict dual immaculate functions, was discovered [Reference Niese, Sundaram, van Willigenburg, Vega and Wang19], thus completing the picture. The representation theory of these functions was revealed in [Reference Niese, Sundaram, van Willigenburg, Vega and Wang20], in addition to the fundamental combinatorics in [Reference Niese, Sundaram, van Willigenburg, Vega and Wang19]. In this paper, we extend the combinatorics to uncover skew Pieri rules in the spirit of [Reference Assaf and McNamara3, Reference Lam, Lauve and Sottile12, Reference Tewari and van Willigenburg23] for both row-strict and classical dual immaculate functions.
More precisely, our paper is structured as follows. In Section 2, we establish a right-action analogue of [Reference Lam, Lauve and Sottile12, Theorem 2.1] in Theorem 2.6. We then recall required background for the Hopf algebras of quasisymmetric functions, $\operatorname {QSym}$ , and noncommutative symmetric functions, $\operatorname {NSym}$ , in Section 3. Finally, in Section 4, we give (left) Pieri rules for row-strict immaculate functions and row-strict dual immaculate functions in Corollaries 4.3 and 4.5, respectively. Our final theorem is Theorem 4.7, in which we establish Pieri rules for skew dual immaculate functions, and row-strict skew dual immaculate functions.
2 The right-action skew Littlewood–Richardson rule for Hopf algebras
We begin by recalling and deducing general Hopf algebra results that will be useful later. Following Tewari and van Willigenburg [Reference Tewari and van Willigenburg23], let H and $H^{*}$ be a pair of dual Hopf algebras over a field k with duality pairing $\langle\hspace{2pt} ,\hspace{2pt} \rangle : H \otimes H^{*} \rightarrow k$ for which the structure of $H^{*}$ is dual to that of H and vice versa. Let $h\in H, a\in H^{*}$ . By Sweedler notation, we have coproduct denoted by $\Delta h=\sum h_1\otimes h_2$ , and similarly $h_1h_2 = h_1\cdot h_2$ denotes product. We define the action of one algebra on the other one by the following:
Let $S:H\rightarrow H$ denote the antipode map. Then for $\Delta h= \sum h_1\otimes h_2$ ,
where $\varepsilon $ and $1$ denote counit and unit, respectively. Following Montgomery [Reference Montgomery18], we can define the convolution product $*$ for f and g in H by
Then it follows that
Similarly, $\langle a\rightharpoonup f,b\rangle = \langle f,ba\rangle .$ Since $H^{*}$ is a left H-module algebra under $\rightharpoonup $ , we have that
Lemma 2.1 [Reference Lam, Lauve and Sottile12]
For $g,h\in H$ and $a\in H^{*}$ ,
where $S: H\rightarrow H$ is the antipode.
As in Montgomery [Reference Montgomery18], define a right action by the following:
As before, it follows that $\langle g,f\leftharpoonup a\rangle =\langle fg,a\rangle $ and $\langle a\leftharpoonup f,b\rangle =\langle f,ab\rangle $ .
Lemma 2.2 Let $f \in H$ and $a,b \in H^{*}$ . Then
Proof Let $f,g \in H$ and $a,b \in H^{*}$ . Then
Thus, $f \leftharpoonup (a\cdot b) = \sum (f_1\leftharpoonup a)\cdot (f_2\leftharpoonup b)$ .
Lemma 2.3 Let $a \in H^{*}$ . Then
for any $h \in H$ .
Proof Let $a \in H^{*}$ and $h\in H$ . Then
This is only nonzero when $a_1=1_{H^{*}}$ .
Lemma 2.4 Let $h \in H$ and $a,b \in H^{*}$ . Then
Proof Expand the sum using Lemma 2.2 and coassociativity, $(\Delta \otimes 1)\circ \Delta (h) = (1\otimes \Delta )\circ \Delta (h) = \sum h_1\otimes h_2\otimes h_3$ , to get
Lemma 2.5 Let $g,h \in H$ and $a \in H^{*}$ . Then
Proof Let $g,h \in H$ and $a,b \in H^{*}$ . Then
We can use the right action to obtain an algebraic Littlewood–Richardson formula analogous to [Reference Lam, Lauve and Sottile12, Theorem 2.1] for those bases whose skew elements appear as the right tensor factor in the coproduct.
Let $\{L_\alpha \} \subset H$ and $\{R_\beta \} \subset H^{*}$ be dual bases with indexing set $\mathcal {P}$ . Then
where $b^\gamma _{\alpha ,\beta }$ and $c^\gamma _{\alpha ,\beta }$ are structure constants. We can also write
Note that $L_\alpha \leftharpoonup R_\beta = {R_{\beta /\alpha }}$ and $R_\beta \leftharpoonup L_\alpha = L_{\alpha /\beta }$ . Further,
The antipode acts on $L_\rho $ by $S(L_\rho ) = (-1)^{\theta (\rho )}L_{\rho ^{*}}$ where $\theta :\mathcal {P}\rightarrow \mathbb {N}$ and $*:\mathcal {P}\rightarrow \mathcal {P}$ .
Theorem 2.6 For $\alpha , \beta ,\gamma ,\delta \in \mathcal {P}$ ,
Proof We use Lemma 2.5 and the preceding facts about the product, coproduct, and antipode maps on H and $H^{*}$ to obtain
3 The dual Hopf algebras $\operatorname {QSym}$ and $\operatorname {NSym}$
We now focus our attention on the dual Hopf algebra pair of noncommutative symmetric functions and quasisymmetric functions, and introduce our main objects of study the (row-strict) dual immaculate functions.
A composition $\alpha = (\alpha _1, \ldots , \alpha _k)$ of n, denoted by $\alpha \vDash n$ is a list of positive integers such that $\sum _ {i=1} ^{k} \alpha _i = n$ . We call n the size of $\alpha $ and sometimes denote it by $|\alpha |$ , and call k the length of $\alpha $ and sometimes denote it by $\ell (\alpha )$ . If $\alpha _{j_1}= \cdots = \alpha _{j_m} = i$ , we sometimes abbreviate this to $i^m$ , and denote the empty composition of 0 by $\emptyset $ . There exists a natural correspondence between compositions $\alpha \vDash n$ and subsets $S\subseteq \{ 1, \ldots , n-1\} = [n-1]$ . More precisely, $\alpha = (\alpha _1, \ldots , \alpha _k)$ corresponds to $\operatorname {\mathrm {set}} (\alpha ) = \{ \alpha _1, \alpha _1 + \alpha _2, \ldots , \alpha _1 + \cdots +\alpha _{k-1}\}$ , and conversely $S= \{ s_1, \ldots , s_{k-1}\}$ corresponds to $\operatorname {\mathrm {comp}} (S) = ( s_1, s_2 - s_1, \ldots , n- s_{k-1})$ . We also denote by $S^c$ the set complement of S in $[n-1]$ .
Given a composition $\alpha $ , its diagram, also denoted by $\alpha $ , is the array of left-justified boxes with $\alpha _i$ boxes in row i from the bottom. Given two compositions $\alpha , \beta $ we say that $\beta \subseteq \alpha $ if $\beta _j \leq \alpha _j$ for all $1\leq j \leq \ell (\beta ) \leq \ell (\alpha )$ , and given $\alpha , \beta $ such that $\beta \subseteq \alpha $ , the skew diagram $\alpha / \beta $ is the array of boxes in $\alpha $ but not $\beta $ when $\beta $ is placed in the bottom-left corner of $\alpha $ . If, furthermore, $\beta \subseteq \alpha $ and $\alpha _j - \beta _j \in \{ 0,1\}$ for all $1\leq j \leq \ell (\beta )\leq \ell (\alpha ), $ then we call $\alpha / \beta $ a vertical strip.
Example 3.1 If $\alpha = (3,4,1)$ , then $|\alpha |=8, \ell (\alpha ) = 3$ , and $\operatorname {\mathrm {set}} (\alpha ) = \{3,7\}$ . Its diagram is
and if $\beta = (2,4)$ , then
is a vertical strip.
Definition 3.2 Given a composition $\alpha $ , a standard immaculate tableau T of shape $\alpha $ is a bijective filling of its diagram with $1, \ldots , |\alpha |$ such that:
-
(1) The entries in the leftmost column increase from bottom to top.
-
(2) The entries in each row increase from left to right.
We obtain a standard skew immaculate tableau of shape $\alpha / \beta $ by extending the definition to skew diagrams $\alpha / \beta $ in the natural way.
Given a standard (skew) immaculate tableau, T, its descent set is
Example 3.3 A standard skew immaculate tableau of shape $(3,4,1)/(1)$ is
with $\operatorname {\mathrm {Des}} (T) = \{ 1,5,6 \}$ .
We are now ready to define our Hopf algebras and functions of central interest.
Given a composition $\alpha = ( \alpha _1, \ldots , \alpha _k) \vDash n$ and commuting variables $\{ x_1, x_2, \ldots \}$ we define the monomial quasisymmetric function $M_\alpha $ to be
the fundamental quasisymmetric function $F_\alpha $ to be
the dual immaculate function $\mathfrak {S}^{*}_\alpha $ to be
and the row-strict dual immaculate function $\mathcal {R}\mathfrak {S}^{*} _\alpha $ to be
where the latter two sums are over all standard immaculate tableaux T of shape $\alpha $ . These extend naturally to give skew dual immaculate and row-strict dual immaculate functions $\mathfrak {S}^{*} _{\alpha / \beta }$ [Reference Berg, Bergeron, Saliola, Serrano and Zabrocki6] and $\mathcal {R}\mathfrak {S}^{*} _{\alpha / \beta }$ [Reference Niese, Sundaram, van Willigenburg, Vega and Wang19], where $\alpha / \beta $ is a skew diagram.
Example 3.4 We have that $M_{(2)} = x^2 _1 + x_2 ^2 + x_3 ^2 + \cdots $ and $F_{(2)} = x^2 _1 + x_2 ^2 + x_3 ^2 + \cdots + x_1x_2+x_1x_3+x_2x_3+ \cdots = \mathfrak {S}^{*} _{(2)} = \mathcal {R}\mathfrak {S}^{*} _{(1^2)}$ from the following standard immaculate tableau T with $\operatorname {\mathrm {Des}} (T) = \emptyset $ .
The set of all monomial or fundamental quasisymmetric functions forms a basis for the Hopf algebra of quasisymmetric functions $\operatorname {\mathrm {QSym}}$ , as does the set of all (row-strict) dual immaculate functions. There exists an involutory automorphism $\psi $ defined on fundamental quasisymmetric functions by
such that [Reference Niese, Sundaram, van Willigenburg, Vega and Wang19]
for a composition $\alpha $ . This extends naturally to skew diagrams $\alpha / \beta $ to give
Dual to the Hopf algebra of quasisymmetric functions is the Hopf algebra of noncommutative symmetric functions $\operatorname {NSym}$ . Given a composition $\alpha = (\alpha _1, \ldots , \alpha _k) \vDash n$ and noncommuting variables $\{ y_1, y_2, \ldots \}$ we define the nth elementary noncommutative symmetric function $\boldsymbol {e}_n$ to be
and the elementary noncommutative symmetric function $\boldsymbol {e}_\alpha $ to be
Meanwhile, we define the nth complete homogeneous noncommutative symmetric function $\boldsymbol {h} _n$ to be
and the complete homogeneous noncommutative symmetric function $\boldsymbol {h} _\alpha $ to be
The set of all elementary or complete homogeneous noncommutative symmetric functions forms a basis for $\operatorname {NSym}$ . The duality between $\operatorname {QSym}$ and $\operatorname {NSym}$ is given by
where $\delta _{\alpha \beta }=1$ if $\alpha = \beta $ and 0 otherwise. This induces the bases dual to the (row-strict) dual immaculate functions via
and implicitly defines the bases of immaculate and row-strict immaculate functions. While concrete combinatorial definitions of these functions have been established [Reference Berg, Bergeron, Saliola, Serrano and Zabrocki6, Reference Niese, Sundaram, van Willigenburg, Vega and Wang19], we will not need them here. However, what we will need is the involutory automorphism in $\operatorname {NSym}$ corresponding to $\psi $ in $\operatorname {QSym}$ , defined by $\psi (\boldsymbol {e}_\alpha ) = \boldsymbol {h} _\alpha $ that gives $\psi ({\mathfrak {S}} _\alpha ) = \mathcal {R}{\mathfrak {S}} _\alpha $ [Reference Niese, Sundaram, van Willigenburg, Vega and Wang19].
4 The Pieri rules for skew dual immaculate functions
A left Pieri rule for immaculate functions was conjectured in [Reference Berg, Bergeron, Saliola, Serrano and Zabrocki6, Conjecture 3.7] and proved in [Reference Bergeron, Sánchez-Ortega and Zabrocki8]. Given a composition $\alpha = (\alpha _1,\ldots ,\alpha _k),$ we say that $\operatorname {\mathrm {tail}}(\alpha ) = (\alpha _2,\ldots ,\alpha _k)$ . If $\beta \in \mathbb {Z}^k$ , then $\operatorname {\mathrm {neg}}(\alpha -\beta ) = |\{i:\alpha _i-\beta _i<0\}|$ . Let $\operatorname {\mathrm {sgn}}(\beta )=(-1)^{\operatorname {\mathrm {neg}}(\beta )}$ with $\operatorname {\mathrm {neg}}(\beta )=|\{i:\beta _i<0\}|$ .
Following [Reference Bergeron, Sánchez-Ortega and Zabrocki8], we define $Z_{s,\alpha }$ to be a set of all $\beta \in \mathbb {Z}^k$ such that:
-
(1) $\beta _1+\cdots +\beta _k=s$ and $\beta _1+\cdots +\beta _i\leq s$ for all $i<k$ .
-
(2) $\alpha _i-\beta _i\geq 0$ for all $1\leq i\leq k$ and $|i:\alpha _i-\beta _i=0|\leq 1$ .
-
(3) For all $1\leq i\leq k$ ,
-
• if $\alpha _i>s-(\beta _1+\cdots +\beta _{i-1}),$ then $ 0\leq \beta _i\leq s-(\beta _1+\cdots +\beta _{i-1}),$
-
• if $\alpha _i<s-(\beta _1+\cdots +\beta _{i-1})$ , then $\beta _i<0$ , and
-
• if $\alpha _i=s-(\beta _1+\cdots +\beta _{i-1}),$ then either $\beta _i<0$ or $\beta _i=\alpha _i$ and $\beta _{i+1}=\cdots = \beta _k=0$ .
-
Now we are ready to define the coefficients of the immaculate basis appearing in the left Pieri rule.
Definition 4.1 [Reference Bergeron, Sánchez-Ortega and Zabrocki8]
For a positive integer s and compositions $\alpha , \gamma $ with $|\alpha |-|\gamma |=s$ , let $1\leq j\leq k$ be the smallest integer such that $\alpha _i=\gamma _{i-1}$ for all $j<i\leq k$ where $j=k$ when $\alpha _k\neq \gamma _{k-1}$ . Let $j\leq r\leq k$ be the largest integer such that $\alpha _j<\alpha _{j+1}<\cdots <\alpha _r$ . Let $\alpha ^{(i)} = (\alpha _1,\ldots ,\alpha _i).$ Then define
Theorem 4.2 [Reference Berg, Bergeron, Saliola, Serrano and Zabrocki6, Reference Bergeron, Sánchez-Ortega and Zabrocki8]
Let $m>0$ and $\alpha $ be a composition. Then
Applying $\psi $ to both sides of the left Pieri rule in Theorem 4.2 immediately yields a left Pieri rule for row-strict immaculate functions.
Corollary 4.3 Let $m>0$ and $\alpha $ be a composition. Then
Lemma 3.1 of [Reference Bergeron, Sánchez-Ortega and Zabrocki8] shows that for $s\geq 0$ , $r>0$ and compositions $\alpha ,\beta $ with $|\alpha |=|\beta |+s$ ,
This leads to the following Pieri rule for dual immaculate functions.
Theorem 4.4 [Reference Bergeron, Sánchez-Ortega and Zabrocki8]
Let $s>0$ and $\alpha $ be a composition. Then
Again, applying $\psi $ to both sides gives a Pieri rule for row-strict dual immaculate functions.
Corollary 4.5 Let $s>0$ and $\alpha $ be a composition. Then
We use these results together with Hopf algebra computations to construct a Pieri rule for skew dual immaculate functions. Using the map $\psi $ , this also gives a Pieri rule for row-strict skew dual immaculate functions. But first, we have a small, yet crucial, lemma.
Lemma 4.6 Let $\alpha $ and $\gamma $ be compositions. Then ${\mathfrak {S}}_\gamma \leftharpoonup \mathfrak {S}^{*}_\alpha = \mathfrak {S}^{*}_{\alpha /\gamma }$ .
Proof Recall that if $H= \operatorname {\mathrm {QSym}}$ and $H^{*}=\operatorname {\mathrm {NSym}}$ are our pair of dual Hopf algebras, then we know $\Delta \mathfrak {S}^{*}_\alpha =\sum _\beta \mathfrak {S}^{*}_\beta \otimes \mathfrak {S}^{*}_{\alpha /\beta }$ and we have that
since $\langle {\mathfrak {S}}_\gamma , \mathfrak {S}^{*}_\beta \rangle = \delta _{\gamma \beta }$ , where $\delta _{\gamma \beta } = 1$ if $\gamma =\beta $ and 0 otherwise.
We can now give our Pieri rule for (row-strict) skew dual immaculate functions.
Theorem 4.7 Let $\gamma \subseteq \alpha $ . Then
and hence by applying $\psi $ to both sides
where $|\beta /\tau |=|\alpha /\gamma |+s$ , $\gamma /\tau $ is a vertical strip of length at most s, $\ell (\beta )-\ell (\alpha ) \in \{0,1\}$ and $c^{\alpha }_{|\beta |-|\alpha |,\beta }$ is the coefficient of Definition 4.1. These decompositions are multiplicity-free up to sign.
Proof Note that $\mathfrak {S}^{*}_{(1^s)}=F_{(1^s)}$ and $\mathfrak {S}^{*}_{(s)}=F_{(s)}$ . Recall that
where for $\beta = (\beta _1,\ldots , \beta _k)$ and $\gamma = (\gamma _1,\ldots , \gamma _l)$ , $\beta \cdot \gamma = (\beta _1,\ldots , \beta _k,\gamma _1,\ldots , \gamma _l)$ is the concatenation of $\beta $ and $\gamma $ , and $\beta \odot \gamma = (\beta _1, \ldots , \beta _{k-1},\beta _k+\gamma _1,\gamma _2,\ldots , \gamma _l)$ is the near-concatenation of $\beta $ and $\gamma $ .
Then we have that
Thus,
We first compute ${S(F_{(s-i)})}\leftharpoonup {\mathfrak {S}}_\gamma $ . Since it is well known that $S(F_\alpha )=(-1)^{|\alpha |} F_{\operatorname {\mathrm {comp}}(\operatorname {\mathrm {set}}(\alpha )^c)}$ we have that ${S(F_{(s-i)})=(-1)^{s-i}F_{(1^{s-i})}}$ . Furthermore, we can write the coproduct as
Thus,
By the definition of product and coproduct on $\operatorname {NSym}$ , we have that
To compute this for ${\delta = (1^{s-i}),}$ we use Proposition 3.34 from [Reference Berg, Bergeron, Saliola, Serrano and Zabrocki6] which states that $F^\perp _{(1^r)}{\mathfrak {S}}_\alpha = \sum _\beta {\mathfrak {S}}_\beta $ , where $\beta \in \mathbb {Z}^{\ell (\alpha )}$ , $\alpha _k - \beta _k \in \{0,1\}$ for all k and $|\beta | = |\alpha |-r$ . The operator $F^\perp $ is used throughout [Reference Berg, Bergeron, Saliola, Serrano and Zabrocki6], and has the property that $\langle F^\perp {\mathfrak {S}}_\alpha ,\mathfrak {S}^{*}_\beta \rangle = \langle {\mathfrak {S}}_\alpha ,F \mathfrak {S}^{*}_\beta \rangle $ .
Thus,
where the sum is over all $\beta $ such that $\beta \in \mathbb {Z}^{\ell (\gamma )}$ , $\gamma _k - \beta _k \in \{0,1\}$ for all k, and $|\beta |=|\gamma |-{(s-i)}$ .
Then using the above calculations, Theorem 4.4 and Lemma 4.6, we have that
where $|\beta /\tau |=|\alpha /\gamma |+s$ , $\gamma /\tau $ is a vertical strip of length at most s, and $\ell (\beta )-\ell (\alpha ) \in \{0,1\}$ .
Example 4.8 Let us compute $\mathfrak {S}^{*}_{(2)}\cdot \mathfrak {S}^{*}_{(1,2,1)/(1,1)}$ .
First, we need to compute all compositions $\beta \vDash 4+i$ for $i\in \{0,1,2\}$ and $\ell (\beta )=3$ or $4$ . We list all possible choices for $\beta $ as the set
Next, we need to find $\tau $ by removing a vertical strip of length at most $s=2$ from $\gamma =(1,1)$ . We list all options for $\tau $ as the set $B=\{\emptyset ,(1),(1,1)\}$ .
By Theorem 4.7, now we expand $\mathfrak {S}^{*}_{(2)}\cdot \mathfrak {S}^{*}_{(1,2,1)/(1,1)}$ by finding all valid pairs $(\beta ,\tau )$ such that $|\beta /\tau |=4$ . Thus,
We can compute all the coefficients $c^{\alpha }_{|\beta |-|\alpha |,\beta }$ using Definition 4.1, and most of them turn out to be zero. Hence, we have the following expansion after simplification:
Acknowledgments
The authors would like to thank the Algebraic Combinatorics Research Community program at ICERM for bringing them together.