Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-10T05:58:30.814Z Has data issue: false hasContentIssue false

Heart Failure Summit Review: cardiac re-synchronisation therapy in the failing heart*

Published online by Cambridge University Press:  17 September 2015

Mitchell I. Cohen*
Affiliation:
Chief of Pediatric Cardiology, Phoenix Children’s Hospital, Clinical Associate Professor of Pediatrics, University of Arizona School of Medicine-Phoenix, Phoenix, Arizona, USA
*
Correspondence to: M.I. Cohen, MD, FACC, FHRS, Chief of Pediatric Cardiology & Co-Director of the Heart Center, Phoenix Children’s Hospital, Clinical Associate Professor of Pediatrics, University of Arizona School of Medicine-Phoenix. Tel: 602-933-1000; Fax: 602-933-4166; E-mail: mitchcohenmd@gmail.com

Abstract

Extrapolating cardiac resynchronization therapy (CRT) to pediatric patients with heart failure has at times been difficult given the heterogeneity of pediatric cardiomyopathies, varying congenital heart disease (CHD) substrates, and the fact that most pediatric heart failure patients have right bundle branch block (RBBB) as opposed to LBBB. Yet, despite these limitations a number of multi-center retrospective studies in North America and Europe have identified some data to suggest that certain sub-populations tend to respond positively to CRT. In order to address some of the heterogeneity it is helpful to subdivide pediatric and young adult patients with CHD into four potential groups: (1) CRT for chronic RV pacing, (2) dilated cardiomyopathies, (3) pulmonary right ventricles, and (4) systemic right ventricles. The chronic RV paced group, especially long-standing RV apical pacing, with ventricular dyssynchrony has consistently shown to be the group that best responds to a proactive resynchronization course. CRT therapy in pulmonary right ventricles such as post-op tetralogy of Fallot have shown some promise and may be considered especially if there is evidence of concomitant left ventricular dysfunction with an electrical dyssynchrony. Patients with systemic right ventricles such as post-atrial baffle surgery or congenitally corrected transposition reportedly do well with CRT in the presence of both inter-ventricular and intra-ventricular dyssynchrony. There is little doubt that moving forward to best way to identify which pediatric patients with heart failure will respond to CRT, will require a collaborative effort between the electrophysiologist and the echocardiographer to identify appropriate candidates with electrical and mechanical dyssynchrony.

Type
Original Articles
Copyright
© Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Presented at Johns Hopkins All Children’s Heart Institute, International Pediatric Heart Failure Summit, Saint Petersburg, Florida, United States of America, 4–5 February, 2015.

References

1. Abraham, WT, Fisher, WG, Smith, AL, et al. Cardiac resynchronization in chronic heart failure. N Engl J Med 2002; 346: 18451853.CrossRefGoogle ScholarPubMed
2. Bristow, MR, Saxon, LA, Boehmer, J, et al. Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N Engl J Med 2004; 350: 21402150.CrossRefGoogle ScholarPubMed
3. Moss, AJ, Hall, WJ, Cannom, DS, et al. Cardiac-resynchronization therapy for the prevention of heart-failure events. N Engl J Med 2009; 361: 13291338.CrossRefGoogle ScholarPubMed
4. Cazeau, S, Leclercq, C, Lavergne, T, et al. Effects of multisite biventricular pacing in patients with heart failure and intraventricular conduction delay. N Engl J Med 2001; 344: 873880.CrossRefGoogle ScholarPubMed
5. Dubin, AM, Janousek, J, Rhee, E, et al. Resynchronization therapy in pediatric and congenital heart disease patients: an international multicenter study. J Am Coll Cardiol 2005; 46: 22772283.CrossRefGoogle ScholarPubMed
6. Cecchin, F, Frangini, PA, Brown, DW, et al. Cardiac resynchronization therapy (and multisite pacing) in pediatrics and congenital heart disease: five years experience in a single institution. J Cardiovasc Electrophysiol 2009; 20: 5865.Google Scholar
7. Janousek, J, Gebauer, RA, Abdul-Khaliq, H, et al. Cardiac resynchronisation therapy in paediatric and congenital heart disease: differential effects in various anatomical and functional substrates. Heart 2009; 95: 11651171.CrossRefGoogle ScholarPubMed
8. Jauvert, G, Rousseau-Paziaud, J, Villain, E, et al. Effects of cardiac resynchronization therapy on echocardiographic indices, functional capacity, and clinical outcomes of patients with a systemic right ventricle. Europace 2009; 11: 184190.CrossRefGoogle ScholarPubMed
9. Khairy, P, Fournier, A, Thibault, B, Dubuc, M, Therien, J, Vobecky, SJ. Cardiac resynchronization therapy in congenital heart disease. Int J Cardiol 2006; 109: 160168.Google ScholarPubMed
10. Khairy, P, Van Hare, GF, Balaji, S, et al. PACES/HRS Expert Consensus Statement on the Recognition and Management of Arrhythmias in Adult Congenital Heart Disease: developed in partnership between the Pediatric and Congenital Electrophysiology Society (PACES) and the Heart Rhythm Society (HRS). Endorsed by the governing bodies of PACES, HRS, the American College of Cardiology (ACC), the American Heart Association (AHA), the European Heart Rhythm Association (EHRA), the Canadian Heart Rhythm Society (CHRS), and the International Society for Adult Congenital Heart Disease (ISACHD). Heart Rhythm 2014; 11: e102e165.CrossRefGoogle Scholar
11. Friedberg, MK, Mertens, L. Echocardiographic assessment of ventricular synchrony in congenital and acquired heart disease in children. Echocardiography 2013; 30: 460471.CrossRefGoogle ScholarPubMed
12. Dhingra, R, Pencina, MJ, Wang, TJ, et al. Electrocardiographic QRS duration and the risk of congestive heart failure: the Framingham Heart Study. Hypertension 2006; 47: 861867.CrossRefGoogle ScholarPubMed
13. Prinzen, FW, Hunter, WC, Wyman, BT, McVeigh, ER. Mapping of regional myocardial strain and work during ventricular pacing: experimental study using magnetic resonance imaging tagging. J Am Coll Cardiol 1999; 33: 17351742.CrossRefGoogle ScholarPubMed
14. Nelson, GS, Berger, RD, Fetics, BJ, et al. Left ventricular or biventricular pacing improves cardiac function at diminished energy cost in patients with dilated cardiomyopathy and left bundle-branch block. Circulation 2000; 102: 30533059.CrossRefGoogle ScholarPubMed
15. Mollema, SA, Bleeker, GB, van der Wall, EE, Schalij, MJ, Bax, JJ. Usefulness of QRS duration to predict response to cardiac resynchronization therapy in patients with end-stage heart failure. Am J Cardiol 2007; 100: 16651670.CrossRefGoogle ScholarPubMed
16. van der Hulst, AE, Delgado, V, Blom, NA, et al. Cardiac resynchronization therapy in paediatric and congenital heart disease patients. Eur Heart J 2011; 32: 22362246.CrossRefGoogle ScholarPubMed
17. Pham, PP, Balaji, S, Shen, I, Ungerleider, R, Li, X, Sahn, DJ. Impact of conventional versus biventricular pacing on hemodynamics and tissue Doppler imaging indexes of resynchronization postoperatively in children with congenital heart disease. J Am Coll Cardiol 2005; 46: 22842289.CrossRefGoogle ScholarPubMed
18. Prinzen, FW, Peschar, M. Relation between the pacing induced sequence of activation and left ventricular pump function in animals. Pacing Clin Electrophysiol 2002; 25: 484498.CrossRefGoogle ScholarPubMed
19. Breur, JM, Udink Ten Cate, FE, Kapusta, L, et al. Pacemaker therapy in isolated congenital complete atrioventricular block. Pacing Clin Electrophysiol 2002; 25: 16851691.CrossRefGoogle ScholarPubMed
20. Thambo, JB, Bordachar, P, Garrigue, S, et al. Detrimental ventricular remodeling in patients with congenital complete heart block and chronic right ventricular apical pacing. Circulation 2004; 110: 37663772.CrossRefGoogle ScholarPubMed
21. Moak, JP, Hasbani, K, Ramwell, C, et al. Dilated cardiomyopathy following right ventricular pacing for AV block in young patients: resolution after upgrading to biventricular pacing systems. J Cardiovasc Electrophysiol 2006; 17: 10681071.CrossRefGoogle ScholarPubMed
22. Karpawich, PP, Rabah, R, Haas, JE. Altered cardiac histology following apical right ventricular pacing in patients with congenital atrioventricular block. Pacing Clin Electrophysiol 1999; 22: 13721377.CrossRefGoogle ScholarPubMed
23. Kurosaki, K, Miyazaki, A, Watanabe, K, Echigo, S. Long-term outcome of isolated congenital complete atrioventricular block pacing since neonatal period: experience at a single Japanese institution. Circ J 2008; 72: 8187.CrossRefGoogle Scholar
24. Janousek, J, Tomek, V, Chaloupecky, VA, et al. Cardiac resynchronization therapy: a novel adjunct to the treatment and prevention of systemic right ventricular failure. J Am Coll Cardiol 2004; 44: 19271931.CrossRefGoogle Scholar
25. Gebauer, RA, Tomek, V, Salameh, A, et al. Predictors of left ventricular remodelling and failure in right ventricular pacing in the young. Eur Heart J 2009; 30: 10971104.CrossRefGoogle ScholarPubMed
26. Vanagt, WY, Verbeek, XA, Delhaas, T, Mertens, L, Daenen, WJ, Prinzen, FW. The left ventricular apex is the optimal site for pediatric pacing: correlation with animal experience. Pacing Clin Electrophysiol 2004; 27: 837843.CrossRefGoogle ScholarPubMed
27. Vanagt, WY, Verbeek, XA, Delhaas, T, et al. Acute hemodynamic benefit of left ventricular apex pacing in children. Ann Thorac Surg 2005; 79: 932936.CrossRefGoogle ScholarPubMed
28. Chen, CA, Hsiao, CH, Wang, JK, et al. Implication of QRS prolongation and its relation to mechanical dyssynchrony in idiopathic dilated cardiomyopathy in childhood. Am J Cardiol 2009; 103: 103109.CrossRefGoogle ScholarPubMed
29. Friedberg, MK, Roche, SL, Balasingam, M, et al. Evaluation of mechanical dyssynchrony in children with idiopathic dilated cardiomyopathy and associated clinical outcomes. Am J Cardiol 2008; 101: 11911195.CrossRefGoogle ScholarPubMed
30. Forsha, D, Slorach, C, Chen, CK, et al. Classic-pattern dyssynchrony and electrical activation delays in pediatric dilated cardiomyopathy. J Am Soc Echocardiogr 2014; 27: 956964.CrossRefGoogle ScholarPubMed
31. Vogel, M, Sponring, J, Cullen, S, Deanfield, JE, Redington, AN. Regional wall motion and abnormalities of electrical depolarization and repolarization in patients after surgical repair of tetralogy of Fallot. Circulation 2001; 103: 16691673.CrossRefGoogle ScholarPubMed
32. Abd El Rahman, MY, Hui, W, Yigitbasi, M, et al. Detection of left ventricular asynchrony in patients with right bundle branch block after repair of tetralogy of Fallot using tissue-Doppler imaging-derived strain. J Am Coll Cardiol 2005; 45: 915921.CrossRefGoogle ScholarPubMed
33. Pedersen, TA, Andersen, NH, Knudsen, MR, Christensen, TD, Sorensen, KE, Hjortdal, VE. The effects of surgically induced right bundle branch block on left ventricular function after closure of the ventricular septal defect. Cardiol Young 2008; 18: 430436.CrossRefGoogle ScholarPubMed
34. Dubin, AM, Feinstein, JA, Reddy, VM, Hanley, FL, Van Hare, GF, Rosenthal, DN. Electrical resynchronization: a novel therapy for the failing right ventricle. Circulation 2003; 107: 22872289.CrossRefGoogle ScholarPubMed
35. Janousek, J, Vojtovic, P, Hucin, B, et al. Resynchronization pacing is a useful adjunct to the management of acute heart failure after surgery for congenital heart defects. Am J Cardiol 2001; 88: 145152.CrossRefGoogle Scholar
36. Thambo, JB, Dos Santos, P, De Guillebon, M, et al. Biventricular stimulation improves right and left ventricular function after tetralogy of Fallot repair: acute animal and clinical studies. Heart Rhythm 2010; 7: 344350.CrossRefGoogle ScholarPubMed
37. Ghai, A, Silversides, C, Harris, L, Webb, GD, Siu, SC, Therrien, J. Left ventricular dysfunction is a risk factor for sudden cardiac death in adults late after repair of tetralogy of Fallot. J Am Coll Cardiol 2002; 40: 16751680.CrossRefGoogle ScholarPubMed
38. Broberg, CS, Aboulhosn, J, Mongeon, FP, et al. Prevalence of left ventricular systolic dysfunction in adults with repaired tetralogy of fallot. Am J Cardiol 2011; 107: 12151220.CrossRefGoogle ScholarPubMed
39. Merchant, FM, Kella, D, Book, WM, Langberg, JJ, Lloyd, MS. Cardiac resynchronization therapy in adult patients with repaired tetralogy of Fallot and left ventricular systolic dysfunction. Pacing Clin Electrophysiol 2014; 37: 321328.CrossRefGoogle ScholarPubMed
40. Hraska, V, Duncan, BW, Mayer, JE Jr., Freed, M, del Nido, PJ, Jonas, RA. Long-term outcome of surgically treated patients with corrected transposition of the great arteries. J Thorac Cardiovasc Surg 2005; 129: 182191.CrossRefGoogle ScholarPubMed
41. Huhta, JC, Maloney, JD, Ritter, DG, Ilstrup, DM, Feldt, RH. Complete atrioventricular block in patients with atrioventricular discordance. Circulation 1983; 67: 13741377.CrossRefGoogle ScholarPubMed
42. Kiesewetter, C, Michael, K, Morgan, J, Veldtman, GR. Left ventricular dysfunction after cardiac resynchronization therapy in congenital heart disease patients with a failing systemic right ventricle. Pacing Clin Electrophysiol 2008; 31: 159162.CrossRefGoogle ScholarPubMed
43. Bacha, EA, Zimmerman, FJ, Mor-Avi, V, et al. Ventricular resynchronization by multisite pacing improves myocardial performance in the postoperative single-ventricle patient. Ann Thorac Surg 2004; 78: 16781683.CrossRefGoogle ScholarPubMed
44. Senzaki, H, Kyo, S, Matsumoto, K, et al. Cardiac resynchronization therapy in a patient with single ventricle and intracardiac conduction delay. J Thorac Cardiovasc Surg 2004; 127: 287288.CrossRefGoogle Scholar
45. Motonaga, KS, Miyake, CY, Punn, R, Rosenthal, DN, Dubin, AM. Insights into dyssynchrony in hypoplastic left heart syndrome. Heart Rhythm 2012; 9: 20102015.CrossRefGoogle ScholarPubMed
46. Seo, Y, Ishizu, T, Atsumi, A, Kawamura, R, Aonuma, K. Three-dimensional speckle tracking echocardiography. Circ J 2014; 78: 12901301.CrossRefGoogle ScholarPubMed
47. Manchanda, M, McLeod, CJ, Killu, A, Asirvatham, SJ. Cardiac resynchronization therapy for patients with congenital heart disease: technical challenges. J Interv Card Electrophysiol 2013; 36: 7179.CrossRefGoogle ScholarPubMed
48. Ebert, PA, Gay, WA Jr, Engle, MA. Correction of transposition of the great arteries: relationship of the coronary sinus and postoperative arrhythmias. Ann Surg 1974; 180: 433438.CrossRefGoogle ScholarPubMed
49. Bottega, NA, Kapa, S, Edwards, WD, et al. The cardiac veins in congenitally corrected transposition of the great arteries: delivery options for cardiac devices. Heart Rhythm 2009; 6: 14501456.CrossRefGoogle ScholarPubMed
50. Yu, CM, Chan, YS, Zhang, Q, et al. Benefits of cardiac resynchronization therapy for heart failure patients with narrow QRS complexes and coexisting systolic asynchrony by echocardiography. J Am Coll Cardiol 2006; 48: 22512257.CrossRefGoogle ScholarPubMed
51. Bax, JJ, Bleeker, GB, Marwick, TH, et al. Left ventricular dyssynchrony predicts response and prognosis after cardiac resynchronization therapy. J Am Coll Cardiol 2004; 44: 18341840.Google ScholarPubMed
52. Achilli, A, Sassara, M, Ficili, S, et al. Long-term effectiveness of cardiac resynchronization therapy in patients with refractory heart failure and “narrow” QRS. J Am Coll Cardiol 2003; 42: 21172124.Google ScholarPubMed