Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-01T08:16:23.030Z Has data issue: false hasContentIssue false

The Poisson boundary of a locally discrete group of diffeomorphisms of the circle

Published online by Cambridge University Press:  12 March 2012

BERTRAND DEROIN*
Affiliation:
Université Paris-Sud & CNRS, Laboratoire de Mathématiques, Bât 425, 91405 Orsay Cedex, France (email: bertrand.deroin@math.u-psud.fr)

Abstract

We compute the Poisson boundary of locally discrete groups of diffeomorphisms of the circle.

Type
Research Article
Copyright
©2012 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Antonov, V.. Model of processes of cyclic evolution type. Synchronisation by a random signal. Vestn. Leningr. Univ. Ser. Mat. Mekh. Astron. 2(7) (1984), 6776.Google Scholar
[2]Avez, A.. Entropie des groupes de type fini. C. R. Acad. Sci. Paris Sér. A–B 275 (1972), 13631366.Google Scholar
[3]Baxendale, P.. Lyapunov exponents and relative entropy for a stochastic flow of diffeomorphisms. Probab. Theory Related Fields 81 (1989), 521554.CrossRefGoogle Scholar
[4]Chaperon, M.. Invariant manifolds revisited. Proc. Steklov Inst. Math. 236(1) (2002), 415433.Google Scholar
[5]Deroin, B. and Kleptsyn, V.. Random conformal dynamical systems. Geom. Funct. Anal. 17(4) (2007), 10431105.Google Scholar
[6]Deroin, B., Kleptsyn, V. and Navas, A.. Sur la dynamique unidimensionnelle en régularité intermédiaire. Acta Math. 199 (2007), 199262.Google Scholar
[7]Derriennic, Y.. Entropie, Théorèmes Limite, et Marches Aléatoire (Lecture Notes in Mathematics, 1210). Springer, Berlin, 1986.Google Scholar
[8]Ghys, É.. Sur les groupes engendrés par des difféomorphismes proches de l’identité. Bull. Braz. Math. Soc. (N.S.) 24(2) (1993), 137178.Google Scholar
[9]Ghys, É.. Groups acting on the circle. Enseign. Mat. 47 (2001), 329407.Google Scholar
[10]Ghys, É. and Sergiescu, V.. Sur un groupe remarquable de difféomorphismes du cercle. Comment. Math. Helv. 62(2) (1987), 185239.Google Scholar
[11]Furstenberg, H.. Boundary Theory and Stochastic Processes on Homogeneous Spaces (Proceedings of Symposia in Pure Mathematics, 26). American Mathematical Society, Providence, RI, 1973, pp. 193229.Google Scholar
[12]Kaimanovich, V.. The Poisson formula for groups with hyperbolic properties. Ann. of Math. (2) 152 (2000), 659692.Google Scholar
[13]Kaimanovich, V. and Vershik, A.. Random walks on discrete groups: boundary and entropy. Ann. Probab. 11(3) (1983), 457490.CrossRefGoogle Scholar
[14]Kleptsyn, V. and Nal’ski, M.. Convergence of orbits in random dynamical systems on the circle. Funct. Anal. Appl. 38(4) (2004), 267282.Google Scholar
[15]Nakai, I.. Separatrices for non solvable dynamics on (C,0). Ann. Inst. Fourier 4(2) (1994), 569599.Google Scholar
[16]Ledrappier, F.. Quelques propriétés des exposants caractéristiques. École d’été de St Flour XII – 1982 (Lecture Notes in Mathematics, 1097). Springer, Berlin, 1984, pp. 305396.Google Scholar
[17]Ledrappier, F.. Une relation entre entropie, dimension et exposant pour certaines marches aléatoires. C. R. Acad. Sci. Sér. I Math. 296(8) (1983), 369372.Google Scholar
[18]Loray, F. and Rebelo, J.. Minimal rigid foliations by curves of CP n. J. Eur. Math. Soc. 5 (2003), 147201.CrossRefGoogle Scholar
[19]Malliavin, P.. The canonic diffusion above the diffeomorphism group of the circle. C. R. Acad. Sci. Sér. I Math. 329 (1999), 325329.Google Scholar
[20]Navas, A.. Groups of Circle Diffeomorphisms (Chicago Lectures in Mathematics). Chicago University Press, Chicago, 2010.Google Scholar
[21]Rebelo, J.. A theorem of measurable rigidity in Diffω(S 1). Ergod. Th. & Dynam. Sys. 21(5) (2001), 15251561.Google Scholar
[22]Sternberg, S.. Local contractions and a theorem of Poincaré. Amer. J. Math. 79 (1957), 809824.Google Scholar
[23]Yoccoz, J. C.. Centralisateurs et conjugaison différentiable des difféomorphismes du cercle. Petits diviseurs en dimension 1. Astérisque 231 (1995), 89242.Google Scholar