Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-14T19:16:46.412Z Has data issue: false hasContentIssue false

Mathematical models and reconstruction methods in magneto-acoustic imaging

Published online by Cambridge University Press:  01 June 2009

HABIB AMMARI
Affiliation:
Laboratoire Ondes et Acoustique, CNRS UMR 7587, ESPCI, 10 rue Vauquelin, 75231 Paris, France email: habib.ammari@polytechnique.fr
YVES CAPDEBOSCQ
Affiliation:
Mathematical Institute, 24-29 St Giles', Oxford OX1 3LB, UK email: capdeboscq@maths.ox.ac.uk
HYEONBAE KANG
Affiliation:
Department of Mathematics, Inha University, Incheon 402-751, Korea email: hbkang@inha.ac.kr
ANASTASIA KOZHEMYAK
Affiliation:
Centre de Mathématiques Appliquées, CNRS UMR 7641, Ecole Polytechnique, 91128 Palaiseau, France email: kozhemyak@polytechnique.fr

Abstract

In this paper, we provide the mathematical basis for three different magneto-acoustic imaging approaches (vibration potential tomography, magneto-acoustic tomography with magnetic induction and magneto-acoustic current imaging) and propose new algorithms for solving the inverse problem for each of them.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Ammari, H. (2002) An inverse initial boundary value problem for the wave equation in the presence of imperfections of small volume. SIAM J. Control Optim. 41, 11941211.CrossRefGoogle Scholar
[2]Ammari, H., Bonnetier, E., Capdeboscq, Y., Tanter, M. & Fink, M. (2008) Electrical impedance tomography by elastic deformation. SIAM J. Appl. Math. 68, 15571573.Google Scholar
[3]Bardos, C., Lebeau, G. & Rauch, J. (1992) Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J. Control Optim. 30, 10241065.CrossRefGoogle Scholar
[4]Capdeboscq, Y., Fehrenbach, J., de Gournay, F. & Kavian, O. (2008) An optimal control approach to imaging by modification.Google Scholar
[5]Friedlander, F. G. (1975) The Wave Equation on a Curved Space-Time, Cambridge University Press, Cambridge, UK.Google Scholar
[6]Haider, S., Hrbek, A. & Xu, Y. (2007) Magneto-acousto-electrical tomography.Google Scholar
[7]Hetch, F., Pironneau, O., Ohtsuka, K. & Le Hyaric, A. (2007) FreeFem++, http://www.freefem.org.Google Scholar
[8]Islam, M. R. & Towe, B. C. 1988 Bioelectric current image reconstruction from magneto-acoustic measurements. IEEE Trans. Med. Img. 7, 386391.Google Scholar
[9]Kim, Y. J., Kwon, O., Seo, J. K. & Woo, E. J. (2003) Uniqueness and convergence of conductivity image reconstruction in magnetic resonance electrical impedance tomography. Inverse Prob. 19, 12131225.CrossRefGoogle Scholar
[10]Kim, S., Kwon, O., Seo, J. K. & Yoon, J. R. (2002) On a nonlinear partial differential equation arising in magnetic resonance electrical impedance imaging. SIAM J. Math. Anal. 34, 511526.CrossRefGoogle Scholar
[11]Kwon, O., Seo, J. K. & Yoon, J. R. (2002) A real-time algorithm for the location search of discontinuous conductivities with one measurement. Comm. Pure Appl. Math. 55, 129.CrossRefGoogle Scholar
[12]Li, X., Xu, Y. & He, B. (2006) Magnetoacoustic tomography with magnetic induction for imaging electrical impedance of biological tissue. J. Appl. Phys. 99, 13, Art. No. 066112.CrossRefGoogle ScholarPubMed
[13]Li, X., Xu, Y. & He, B. (2007) Imaging electrical impedance from acoustic measurements by means of magnetoacoustic tomography with magnetic induction (MAT-MI). IEEE Trans. Biomed. Eng. 54, 323330.Google Scholar
[14]Montalibet, A., Jossinet, J., Matias, A. & Cathignol, D. (2001) Electric current generated by ultrasonically induced Lorentz force in biological media. Medical Biol. Eng. Comput. 39, 1520.CrossRefGoogle ScholarPubMed
[15]Roth, B. J. & Basser, P. J. (1990) A model of the stimulation of a nerve fiber by electromagnetic induction. IEEE Trans. Biomed. Eng. 37, 588597.CrossRefGoogle Scholar
[16]Roth, B. J., Basser, P. J. & Wikswo, J. P. Jr, (1994) A theoretical model for magneto-acoustic imaging of bioelectric currents. IEEE Trans. Biomed. Eng. 41, 723728.Google Scholar
[17]Wen, H., Shah, J. & Balaban, R. S. (1997) An imaging method using the interaction between ultrasound and magnetic field. Proc. IEEE Ultrasonics Symp. 2, 14071410.Google Scholar
[18]Wen, H., Shah, J. & Balaban, R. S. (1998) Hall effect imaging. IEEE Trans. Biomed. Eng. 45, 119124.CrossRefGoogle ScholarPubMed
[19]Xua, M. & Wang, L. V. (2006) Photoacoustic imaging in biomedicine. Rev. Scientific Instrum. 77, 122, 041101.Google Scholar