Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-10T05:35:17.811Z Has data issue: false hasContentIssue false

Concentración de N-acetil-aspartato en el área prefrontal dorsolateral en hombres con esquizofrenia crónica y trastorno bipolar crónico

Published online by Cambridge University Press:  12 May 2020

V. Molina
Affiliation:
Departamento de Psiquiatría, Hospital Clínico Universitario, Paseo de San Vicente 58-182, E-37007Salamanca, España
J. Sánchez
Affiliation:
Departamento de Medicina Experimental, Hospital General Universitario Gregorio Marañón, Madrid, España
J. Sanz
Affiliation:
Departamento de Psiquiatría, Hospital Doce de Octubre, Madrid, España
S. Reig
Affiliation:
Departamento de Medicina Experimental, Hospital General Universitario Gregorio Marañón, Madrid, España
C. Benito
Affiliation:
Departamento de Radiología, Hospital Gregorio Marañón, Madrid, España
I. Leal
Affiliation:
Departamento de Psiquiatría, Hospital de Jaén, Jaén, España
F. Sarramea
Affiliation:
Departamento de Psiquiatría, Hospital de Jaén, Jaén, España
R. Rebolledo
Affiliation:
Departamento de Psiquiatría, Hospital Doce de Octubre, Madrid, España
T. Palomo
Affiliation:
Departamento de Psiquiatría, Hospital Doce de Octubre, Madrid, España
M. Desco
Affiliation:
Departamento de Medicina Experimental, Hospital General Universitario Gregorio Marañón, Madrid, España
Get access

Resumen

Objetivos.

El estudio de la concentración de N-acetil-aspartato (NAA) proporciona datos interesantes sobre las alteraciones corticales en las enfermedades psicóticas. Aunque la reducción de la concentración de NAA en la corteza cerebral es un resultado habitual en la esquizofrenia crónica, es menos constante en la enfermedad bipolar. Por otra parte, es probable que los valores de NAA puedan ser diferente en hombres y mujeres con esquizofrenia.

Métodos.

Mediante con espectroscopia por resonancia magnética protónica ('H MRS) calculamos las concentraciones de NAA en la corteza prefrontal de dos grupos de hombres, uno con esquizofrenia (n = 11) y otro con trastorno bipolar (n = 13) de similar duración y los comparamos con una muestra de hombres sanos que usamos como grupo control (n = 10). Además, comparamos el grado de desviaciones estructurales de los volúmenes normales de sustancia gris (SG) y líquido cefalorraquídeo (LCR) en la corteza prefrontal dorsolateral.

Resultados.

Comparados con los controles, los pacientes con esquizofrenia y trastorno bipolar tuvieron un cociente NAA/creatina más bajo, y sólo el grupo de pacientes con esquizofrenia mostró un aumento de LCR en la región prefrontal dorsolateral. No hubo ninguna diferencia entre los grupos en el cociente colina/creatina.

Conclusiones.

Estos datos sugieren que la disminución de NAA en la región prefrontal pueda ser similar en la esquizofrenia y en el trastorno bipolar, al menos, en estados crónicos. Sin embargo, el LCR cortical puede aumentar significativamente en pacientes con esquizofrenia.

Type
Artículo original
Copyright
Copyright © European Psychiatric Association 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bibliografía

Amaral, JA, Tamada, RS, Issler, CK, Caetano, SC, Cerri, GG, de Castro, CC, et al. A (1) HMRS study of the anterior cingulate gyrus in euthymic bipolar patients. Hum Psychopharmacol 2006;21:215–20.CrossRefGoogle ScholarPubMed
Andreasen, NC, Rajarethinam, R, Cizadlo, T, Arndt, S, Swayze, VW2nd, Flashman, LA, et al. Automatic atlas-based volume estimation of human brain regions from MR images. J Comput Assist Tomogr 1996;20:98106.CrossRefGoogle ScholarPubMed
Angelie, E, Bonmartin, A, Boudraa, A, Gonnaud, PM, Mallet, JJ, Sappey-Marinier, D. Regional differences and metabolic changes in normal aging of the human brain: proton MR spectroscopic imaging study. Am J Neuroradiol 2001;22:119–27.Google ScholarPubMed
Ashbumer, J, Friston, KJ. Multimodal image coregistration and partitioning-a unified framework. Neuroimage 1997;6:209–17.CrossRefGoogle Scholar
Ashbumer, J, Friston, KJ. Voxel-based morphometry—the methods. Neuroimage 2000;11:805–21.CrossRefGoogle Scholar
Bertolino, A, Callicott, JH, Elman, I, Mattay, VS, Tedeschi, G, Frank, JA, et al. Regionally specific neuronal pathology in untreated patients with schizophrenia: a proton magnetic resonance spectroscopic imaging study. Biol Psychiatry 1998;43:641–8.CrossRefGoogle ScholarPubMed
Bertolino, A, Callicott, JH, Mattay, VS, Weidenhammer, KM, Rakow, R, Egan, MF, et al. The effect of treatment with antipsychotic drugs on brain N-acetylaspartate measures in patients with schizophrenia. Biol Psychiatry 2001;49:3946.CrossRefGoogle ScholarPubMed
Bertolino, A, Frye, M, Callicott, JH, Mattay, VS, Rakow, R, Shelton-Repella, J, et al. Neuronal pathology in the hippocampal area of patients with bipolar disorder: a study with proton magnetic resonance spectroscopic imaging. Biol Psychiatry 2003;53:906–13.CrossRefGoogle ScholarPubMed
Bottomley, PA. Spatial localization in NMR spectroscopy in vivo. Ann N Y Acad Sci 1987;508:333–48.CrossRefGoogle ScholarPubMed
Brambilla, P, Stanley, JA, Sassi, RB, Nicoletti, MA, Mallinger, AG, Keshavan, MS, et al. 1H MRS study of dorsolateral prefrontal cortex in healthy individuals before and after lithium administration. Neuropsychopharmacology 2004;29:1918–24.CrossRefGoogle ScholarPubMed
Brooks, JC, Roberts, N, Kemp, GJ, Gosney, MA, Lye, M, Whitehouse, GH. A proton magnetic resonance spectroscopy study of age-related changes in frontal lobe metabolite concentrations. Cereb Cortex 2001;11:598605.CrossRefGoogle ScholarPubMed
Buckley, PF, Moore, C, Long, H, Larkin, C, Thompson, P, Mulvany, F, et al. 1H-magnetic resonance spectroscopy of the left temporal and frontal lobes in schizophrenia: clinical, neurodevelopmental, and cognitive correlates. Biol Psychiatry 1994;36:792800.CrossRefGoogle ScholarPubMed
Bustillo, JR, Lauriello, J, Rowland, LM, Jung, RE, Petropoulos, H, Hart, BL, et al. Effects of chronic haloperidol and clozapine treatments on frontal and caudate neurochemistry in schizophrenia. Psychiatry Res 2001;107:135–49.CrossRefGoogle Scholar
Cecil, KM, DelBello, MP, Morey, R, Strakowski, SM. Frontal lobe differences in bipolar disorder as determined by proton MR spectroscopy. Bipolar Disord 2002;4:357–65.CrossRefGoogle ScholarPubMed
Cecil, KM, DelBello, MP, Sellars, MC, Strakowski, SM. Proton magnetic resonance spectroscopy of the frontal lobe and cerebellar vermis in children with a mood disorder and a familial risk for bipolar disorders. J Child Adolesc Psychopharmacol 2003;13:545–55.CrossRefGoogle Scholar
Craddock, N, O'Donovan, MC, Owen, MJ. The genetics of schizophrenia and bipolar disorder: dissecting psychosis. J Med Genet 2005;42:193204.CrossRefGoogle ScholarPubMed
Dager, SR, Friedman, SD, Parow, A, Demopulos, C, Stoll, AL, Lyoo, IK, et al. Brain metabolic alterations in medication-free patients with bipolar disorder. Arch Gen Psychiatry 2004;61:450–8.CrossRefGoogle ScholarPubMed
Deicken, RF, Eliaz, Y, Feiwell, R, Schuff, N. Increased thalamic Nacetylaspartate in male patients with familial bipolar I disorder. Psychiatry Res 2001;106:3545.CrossRefGoogle Scholar
Deicken, RF, Zhou, L, Corwin, F, Vinogradov, S, Weiner, MW. Decreased left frontal lobe N-acetylaspartate in schizophrenia. Am J Psychiatry 1997;154:688–90.Google Scholar
Deseo, M, Pascau, J, Reig, S, Gispert, JD, Santos, A, Benito, B, et al. Multimodality Image Quantification Using Talairach Grid. Proc SPIE Medical Imaging 2001;4422:1385–92.Google Scholar
Hedges, LV, Olkin, I. Statistical methods for meta-analysis. San Diego, CA: Academic Press; 1985.Google Scholar
Hollingshead, A, Frederick, R. Social stratification and psychiatric disorders. Am Soc Rev 1953;18:163–89.CrossRefGoogle Scholar
Kates, WR, Warsofsky, IS, Patwardhan, A, Abrams, MT, Liu, AM, Naidu, S, et al. Automated Talairach atlas-based parcellation and measurement of cerebral lobes in children. Psychiatry Res 1999;91:1130.CrossRefGoogle ScholarPubMed
Keshavan, MS, Stanley, JA, Pettegrew, JW. Magnetic resonance spectroscopy in schizophrenia: methodological issues and findings—part II. Biol Psychiatry 2000;48:369–80.CrossRefGoogle ScholarPubMed
Kreis, R, Ernst, T, Ross, BD. Development of the human brain: in vivo quantification of metabolite and water content with proton magnetic resonance spectroscopy. Magn Reson Med 1993;30:424–37.CrossRefGoogle ScholarPubMed
Lim, KO, Adalsteinsson, E, Spielman, D, Sullivan, EV, Rosenbloom, MJ, Pfefferbaum, A. Proton magnetic resonance spectroscopic imaging of cortical gray and white matter in schizophrenia. Arch Gen Psychiatry 1998;55:346–52.CrossRefGoogle Scholar
Lim, KO, Rosenbloom, MJ, Faustman, WO, Sullivan, EV, Pfefferbaum, A. Cortical gray matter deficit in patients with bipolar disorder. Schizophr Res 1999;40:219–27.CrossRefGoogle ScholarPubMed
McDonald, C, Bullmore, ET, Sham, PC, Chituis, X, Wickham, H, Bramon, E, et al. Association of genetic risks for schizophrenia and bipolar disorder with specific and generic brain structural endophenotypes. Arch Gen Psychiatry 2004;61:974–84.CrossRefGoogle ScholarPubMed
Mclntosh, AM, Job, DE, Moorhead, TW, Harrison, LK, Forrester, K, Lawrie, SM, et al. Voxel-based morphometry of patients with schizophrenia or bipolar disorder and their unaffected relatives. Biol Psychiatry 2004;56:544–52.CrossRefGoogle Scholar
Molina, V, Sánchez, J, Reig, S, Sanz, J, Benito, C, Santamaria, C, et al. N-acetylaspartate in the dorsolateral prefrontal region in the early years of schizophrenia are inversely related to illness duration. Schizophrenia Res 2005a;73:209–19.CrossRefGoogle Scholar
Molina, V, Reig, S, Sanz, J, Palomo, T, Benito, C, Sánchez, J, et al. Increase in gray matter volume and decrease in white matter volume in the cerebral cortex during treatment with atypical neuroleptics in schizophrenia. Schizophrenia Res 2005b;80:6171.CrossRefGoogle Scholar
Molina, V, Reig, S, Sarramea, F, Sanz, JF, Artaloytia, J, Luque, R, et al. Anatomical and functional brain variables associated to clozapine response in treatment-resistant schizophrenia. Psychiatry Res Neuroimaging 2003;124:153–61.CrossRefGoogle ScholarPubMed
Molina, V, Sanz, J, Sarramea, F, Benito, C, Palomo, T. Lower prefrontal gray matter volume in schizophrenia in chronic but not in first episode schizophrenia patients. Psychiatry Res 2004;131:4556.CrossRefGoogle ScholarPubMed
Moore, CM, Breeze, JL, Gruber, SA, Babb, SM, Frederick, BB, Villafuerte, RA, et al. Choline, myo-inositol and mood in bipolar disorder: a proton magnetic resonance spectroscopic imaging study of the anterior cingulate cortex. Bipolar Disord 2000a;2:207–16.CrossRefGoogle Scholar
Moore, GJ, Bebchuk, JM, Hasanat, K, Chen, G, Seraji-Bozorgzad, N, Wilds, IB, et al. Lithium increases N-acetyl-aspartate in the human brain: in vivo evidence in support of bcl-2's neurotrophic effects? Biol Psychiatry 2000b;48:18.CrossRefGoogle Scholar
Nopoulos, P, Flaum, M, Andreasen, NC. Sex differences in brain morphology in schizophrenia. Am J Psychiatry 1997;154:1648–54.CrossRefGoogle Scholar
Nudmamud, S, Reynolds, LM, Reynolds, GP. N-acetylaspartate and N-Acetylaspartylglutamate deficits in superior temporal cortex in schizophrenia and bipolar disorder: a postmortem study. Biol Psychiatry 2003;53:1138–41.CrossRefGoogle ScholarPubMed
Pfefferbaum, A, Lim, KO, Ziparsky, RB, Mathalon, DH, Rosenbloom, MJ, Lane, B, et al. Brain gray and white matter volume loss accelerates with aging in chronic alcoholics: a quantitative MRI study. Alcohol Clin Exp Res 1992;16:1078–89.CrossRefGoogle ScholarPubMed
Rajkowska, G, Miguel-Hidalgo, JJ, Makkos, Z, Meltzer, H, Overholser, J, Stockmeier, C. Layer-specific reductions in GFAP-reactive astroglia in the dorsolateral prefrontal cortex in schizophrenia. Schizophr Res 2002;57:127–38.CrossRefGoogle Scholar
Schlaepfer, TE, Harris, GJ, Tien, AY, Peng, LW, Lee, S, Fedemman, EB, et al. Decreased regional cortical gray matter volume in schizophrenia. Am J Psychiatry 1994;151:842–8.Google Scholar
Sharma, R, Venkatasubramanian, PN, Bárány, M, Davis, JM. Proton magnetic resonance spectroscopy of the brain in schizophrenic and affective patients. Schizophr Res 1992;8:43–9.CrossRefGoogle ScholarPubMed
Stark, AK, Uylings, HB, Sanz-Arigita, E, Pakkenberg, B. Glial cell loss in the anterior cingulate cortex, a subregion of the prefrontal cortex, in subjects with schizophrenia. Am J Psychiatry 2004;161:882–8.CrossRefGoogle ScholarPubMed
Talairach, J, Tournoux, P. Co-planar stereotaxic atlas of the human brain. Stuttgart: Thieme Medical; 1988.Google Scholar
Urenjak, J, Williams, SR, Gadian, DG, Noble, M. Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types. J Neurosci 1993;13:981–9.CrossRefGoogle ScholarPubMed
van den Boogaart, A, van Ormondt, D, Pijnapel, WWF, de Beer, R, AlaKorpela, M. Removal of the water resonance from 1H magnetic resonance spectra. In: McWhirter, JG, editor. Mathematics in Processing III. Oxford: Clarendon Press; 1994. p. 175–95.Google Scholar
Vanhamme, L, van den Boogaart, A, Van Huffel, S. Improved method for accurate and efficient quantification of MRS data with use of prior knowledge. J Magn Reson 1997;129:3543.CrossRefGoogle ScholarPubMed
Winsberg, ME, Sachs, N, Tate, DL, Adalsteinsson, E, Spielman, D, Ketter, TA. Decreased dorsolateral prefrontal N-acetyl aspartate in bipolar disorder. Biol Psychiatry 2000;47:475–81.CrossRefGoogle ScholarPubMed
Woods, BT. Is schizophrenia a Progressive neurodevelopmental disorder? Toward a unitary pathogenetic mechanism. Am J Psychiatry 1998;155:1661–70.CrossRefGoogle Scholar
Zipursky, RB, Seeman, MV, Bury, A, Langevin, R, Wortzman, G, Katz, R. Deficits in gray matter volume are present in schizophrenia but not bipolar disorder. Schizophr Res 1997;26:8592.CrossRefGoogle Scholar