Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T12:03:12.307Z Has data issue: false hasContentIssue false

Glittery clouds in exoplanetary atmospheres?

Published online by Cambridge University Press:  21 January 2009

Ch. Helling
Affiliation:
SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, KY16 9SS, UK e-mail: ch80@st-and.ac.uk
F.J.M. Rietmeijer
Affiliation:
Department of Earth and Planetary Sciences, MSC03-2040, University of New Mexico, Albuquerque, NM 87131-0001, USA

Abstract

Cloud formation modelling has entered astrophysics as a new field of research for planetary and brown dwarf atmospheres. Clouds are a chemically and physically very active component of an atmosphere since they determine the remaining gas phase and change the object's albedo depending on their material composition. The grains can also provide a surface where the molecular constituents for life can be physisorbed for possible pre-biotic evolution. This paper summarizes our model for the kinetic formation of dirty dust grains which make up the atmospheric clouds of extraterrestrial giant gas planets. We include seed formation, surface growth and evaporation, the gravitational settling that influences the dust formation, element depletion that determines the remaining gas phase abundances, and convective overshooting that is needed for a dust model to be applicable to hydrostatic atmosphere simulations. We demonstrate the evolution of the material composition of the cloud itself and the distribution of the grain sizes in the cloud layer, exemplary for a giant gas planet parameter combinations (Teff, log g). In general, substellar clouds are composed of small, dirty grains with a high silicate content at the cloud deck. They grow in size and gradually purify to iron/corundum grains when they move into denser and hotter atmospheric regions. Comparing these results with experimental data from condensation experiments leads to the conclusion that cloud grains that gravitationally settle in the atmosphere of a giant planet can easily change their lattice structure from the disordered amorphous state they are forming in, into the ordered lattice of a crystal.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anders, E. & Grevesse, N. (1989). Geochim. Cosmochim. Acta 53, 197.CrossRefGoogle Scholar
De, B.R. (1979). Disequilibrium condensation environments in space: A frontier in thermodynamics. Astrophys. Space Sci. 65, 191198.CrossRefGoogle Scholar
Dominik, C., Gail, H.-P. & Sedlmay, E. (1986). Astron. Astrophys. 223, 227.Google Scholar
Fabian, D., Jäger, C., Henning, Th., Dorschner, J. & Mutschke, H. (2000). Astron. Astrophys. 364, 282.Google Scholar
Gail, H.P., Keller, R. & Sedlmayr, E. (1984). Astron. Astrophys. 133, 320.Google Scholar
Gauger, A., Sedlmayr, E. & Gail, H.-P. (1990). Astron. Astrophys. 235, 345.Google Scholar
Grossman, L. & Larimer, J.W. (1974). Geophys. Space Phys. 1, 71.CrossRefGoogle Scholar
Hallenbeck, S.L., Nuth, J.A. III & Daukantes, P.L. (1998). Icarus 131, 198.CrossRefGoogle Scholar
Hallenbeck, S.L., Nuth, J.A. III & Nelson, R.A. (2000). Astrophys. J. 535, 247.CrossRefGoogle Scholar
Helling, Ch. & Woitke, P. (2006). Astron. Astrophys. 455, 325.CrossRefGoogle Scholar
Helling, Ch., Woitke, P. & Thi, W.-F. (2008). Astron. Astrophys. 485, 547.CrossRefGoogle Scholar
Jeong, K.S., Chang, C., Sedlmayr, E. & Sülzle, D. (2000). J. Phys. B: At. Mol. Opt. Phys. 33, 3417.CrossRefGoogle Scholar
Lodders, K. & Fegley, B. (2006). In Astrophysics Update 2, ed. Mason, J.W., Springer/Praxis Publ. Ltd., Chichester, UK.Google Scholar
Nuth, J.A. III, Hallenbeck, S.L. & Rietmeijer, F.J.M. (1999). Interstellar and interplanetary grains, Recent developments and new opportunities for experimental chemistry. In Laboratory Astrophysics and Space Research, eds Ehrenfreund, P., Krafft, K., Kochan, H. & Pirronello, V., pp. 143182. Kluwer Acad. Publ., Dordrecht.CrossRefGoogle Scholar
Nuth, J.A. III, Rietmeijer, F.J.M., Hallenbeck, S.L., Withey, P.A. & Ferguson, F. (2000). Nucleation, growth, annealing and coagulation of refractory oxides and metals: Recent experimental progress and applications to astrophysical systems. In Thermal Emission Spectroscopy and Analysis of Dust, Disks and Regoliths, eds Sitko, M.L. & Lynch, D.K., pp. 313332. Astron. Soc. Pacific Conf. Series 196.Google Scholar
Prigogine, I. (1978). Science 201, 777785.CrossRefGoogle Scholar
Pont, F., Knutson, H., Gilliland, R.L., Moutou, C. & Carbonneau, D. (2008). Mon. Not. R. Astron. Soc. 385(1), 109.CrossRefGoogle Scholar
Richardson, L.J., Deming, D., Horning, K., Seager, S. & Harrington, J. (2007). Nature 445, 892.CrossRefGoogle Scholar
Rietmeijer, F.J.M., Nuth, J.A. & Mackinnon, I.D.R. (1986). Icarus 65, 211.CrossRefGoogle Scholar
Rietmeijer, F.J.M., Pun, A., Kimura, Y. & Nuth, J.A. III (2008). Icarus 195, 493.CrossRefGoogle Scholar
Rietmeijer, F.J.M., Hallenbeck, S.L., Nuth, J.A. III & Karner, J.M. (2002a). Icarus 156, 269286.CrossRefGoogle Scholar
Rietmeijer, F.J.M., Nuth, J.A. III, Karner, J.M. & Hallenbeck, S.L. (2002b). Phys. Chem. Chem. Phys. 4, 546.CrossRefGoogle Scholar
Thompson, S.P. & Tang, C.C. (2001). Astron. Astrophys. 368, 721.CrossRefGoogle Scholar
Woitke, P. & Helling, Ch. (2003). Astron. Astrophys. 399, 297.CrossRefGoogle Scholar
Woitke, P. & Helling, Ch. (2004). Astronomy & Astrophysics. 414, p. 335.CrossRefGoogle Scholar