Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-11T00:13:56.679Z Has data issue: false hasContentIssue false

Gain and bandwidth enhancement of New Planar microstrip array antennas geometry for C band weather radar applications

Published online by Cambridge University Press:  09 November 2016

Abdellatif Slimani*
Affiliation:
University Sidi Mohamed Ben Abdellah, Faculty of Sciences and Technics, Morocco
Saad Dosse Bennani
Affiliation:
University Sidi Mohamed Ben Abdellah, National School of Applied Sciences, Morocco
Ali El Alami
Affiliation:
University Sidi Mohamed Ben Abdellah, Faculty of Sciences and Technics, Morocco
Mohamed Amellal
Affiliation:
Rennes Electronics and Telecommunications Institute, ESEO's research groups, France
*
Corresponding author: A. Slimani Email: abdellatif.slimani@usmba.ac.ma

Abstract

A 4–8 GHz ultra wide band microstrip array antennas with improved gain for weather Radar applications was designed and fabricated. The microstrip radiating elements of the proposed array antennas are powered using a T-junction power divider with quarter wave-transformer impedance for a best matching. The design of this array antennas is based on the geometry of a linear array antennas well studied [ref (8)], which is based on minimizing of the electromagnetic (EM) coupling between the radiating elements and as decreasing the number of side lobes. The array antennas with dimension of (110 × 214 × 1.58 mm3) is fabricated on FR-4 epoxy dielectric with relative permittivity of 4.4 and thickness h = 1.58 mm, it is performed in the full-wave EM solver High Frequency Structure Simulator, CST and verified by measurement. The proposed broadband array antennas show a better performance than the references antennas in deferent parameter which cited after.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Office of the Federal Coordinator for Meteorology: Federal Research and Development Needs and Priorities for Phased Array Radar, FMC-R25-2006, Interdepartmental Committee for Meteorological Services and Supporting Research, Cmte. 2006.Google Scholar
[2] Heinselman, P.L.; Priegnitz, D.L.; Manross, K.L.; Smith, T.M.; Adams, R.W.: Rapid sampling of severe storms by the National Weather Radar Testbed. Weath. Forecast., 23 (5) (2008), 808824.CrossRefGoogle Scholar
[3] Boutejdar, A.; Ibrahim, A.A.; Burte, E.P.: Novel microstrip antenna aims at UWB applications. Microw. RF 54 (2015), 6266.Google Scholar
[4]First Report and Order, Revision of Part 15 of the Commission's Rules Regarding Ultra-wideband Transmission Systems FCC, FCC 02–48, 2002.Google Scholar
[5] Siriwongpairat, W.P.; Liu, K.J.R.: Ultra-Wideband Communication Systems, John Wiley & Sons Publication, Hoboken, New Jersey, 2008.Google Scholar
[6] Bernety, H.M.; Gholami, R.; Zakeri, B.; Rostamian, M.: Linear antenna array design for UWB radar, Radar Conf. (RADAR) in Ottawa, ISSN: 1097–5659, 29 April - 3 May 2013, 1–4.Google Scholar
[7] Slimani, A.; Bennani, S.D.; El Alami, A.; Harkat, H.: Optimization Parameters of Ultra Wideband Microstrip Array Antenna for Wireless Communication Using Beam Steering, in IEEE proceedings of the third IEEE Int. Workshop on RFID and Adaptive Wireless Sensor Networks (RAWSN 2015), Agadir, Morocco, 13–15 May 2015, 12–17.CrossRefGoogle Scholar
[8] Slimani, A.; Bennani, S.D.; El Alami, A.: Conception and Optimization of UWB Microstrip Array Antennas for Radar Applications with Ordinary End-Fire Beam Steering Characteristic, accepted and under publishing in Int. Journal of Ultra Wideband Communications and Systems, Inderscience Publishers, 2016.CrossRefGoogle Scholar
[9] Balanis, C.: Antenna Theory: Analysis and Design, 3rd ed., Wiley and Sons, New York, 2006.Google Scholar
[10] Slimani, A.; Bennani, S.D.; El Alami, A.; Harkat, H.: Comparative Study of the Radiation Performance between Uniform and Non-uniform Excitation of Linear Patch Antenna Array for UWB Radar Applications, Wseas Books: Mathematical and Computational Methods in Electrical Engineering, ISSN: 1790–5117, ISBN: 978-1-61804-329-0, August 2015, 89–95.Google Scholar
[11] Sadat, S.; Fardis, M.; Geran, F.; Dadashzadeh, G.; Hojjat, N.; Roshandel, M.: A Compact Microstrip Square-Ring Slot Antenna for UWB Applications, IEEE Antennas and Propagation Society Int. Symp., NM, USA, 9–14 July 2006, 4629–4632.CrossRefGoogle Scholar
[12] Yaccoub, M.H.D.; Jaoujal, A.; Younssi, M.; El Moussaoui, A.; Aknin, N.: Rectangular ring microstrip patch antenna for ultra-wide band applications. Int. J. Innovation Appl. Studies, 4 (2) (2013), 441446.Google Scholar
[13] Slimani, A.; Bennani, S.D., El Alami, A.; Harkat, H.: Conception et Optimisation d'un Nouveau Réseau d'Antennes ULB en Technologie Micro-ruban pour l’Évaluation des Changements Climatiques, Pôle de recherche Technologie de l'Information et de Communication, Systèmes et Modélisation (TICSM), FST Fès, Maroc, 2015.Google Scholar
[14] Slimani, A.; Bennani, S.D.; El Alami, A.; Harkat, H.: Conception and Optimization of a Bidirectional Ultra Wide Band Planar Array Antennas for C-Band Weather Radar Applications, The 2nd Int. conf. on Information Technology for Organisations Development IT4OD in Fez, March 30 - April 1st, Morocco, 2016.Google Scholar
[15] Chorfi, H.: Conception d'un Nouveau Système d'antenne Réseau Conforme en Onde Millimétrique, Université du Québec à Chicoutimi, Abitibi-Témiscamingue, Mai, 2012.Google Scholar
[16] Douville, R.J.P.; James, D.S.: Experimental study of symmetric microstrip bends and their compensation. IEEE Trans. Microw. Theory Tech., 26 (3) (1978), 175182.CrossRefGoogle Scholar
[17] Ibrahim, A.A.; Abdalla, M.A.; Boutejdar, A.: Resonator switching techniques for notched UWB antenna in wireless applications. IET Microw. Antennas Propag., 9 (13) (2015), 14681477.Google Scholar
[18] Park, Z.; Li, C.; Lin, J.: A broadband microstrip antenna with improved gain for noncontact vital sign radar detection. IEEE Antennas Wireless Propag. Lett., 8 (2009), 939942.CrossRefGoogle Scholar
[19] Knott, P.; Bertuch, T.; Wilden, H.; Peters, O.; Brenner, A.R.; Walterscheid, I.: SAR Experiments using a conformal antenna array radar demonstrator. Int. J. Antennas Propag., 2012 (2012), 7.CrossRefGoogle Scholar
[20] Karimkashi, S.; Zhang, G.: A dual-polarized series-fed microstrip antenna array with very high polarization purity for weather measurements. IEEE Trans. Antennas Propag., 61 (10) (2013), 53155319.CrossRefGoogle Scholar
[21] Kuo, F.; Hwang, R.B.: High-isolation X-band marine radar antenna design. IEEE Trans. Antennas Propag., 62 (5) (2014), 23312337.Google Scholar