Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-11T00:34:09.911Z Has data issue: false hasContentIssue false

Water wave transmission and energy dissipation by a floating plate in the presence of overwash

Published online by Cambridge University Press:  21 February 2020

Filippo Nelli
Affiliation:
Department of Infrastructure Engineering, University of Melbourne, Parkville, VIC 3010, Australia
Luke G. Bennetts*
Affiliation:
School of Mathematical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
David M. Skene
Affiliation:
Faculty of Engineering and Mathematical Sciences, University of Western Australia, Crawley, WA 6009, Australia
Alessandro Toffoli
Affiliation:
Department of Infrastructure Engineering, University of Melbourne, Parkville, VIC 3010, Australia
*
Email address for correspondence: luke.bennetts@adelaide.edu.au

Abstract

A numerical model, based on the two-phase incompressible Navier–Stokes equations, is used to study transmission of regular water waves by a thin floating plate in two dimensions. The model is shown to capture the phenomenon of waves overwashing the plate, and the generation of turbulent bores on the upper plate surface. It is validated against laboratory experimental measurements, in terms of the transmitted wave field and overwash depths, for a set of incident wave periods and steepness values. Corresponding simulations are performed for a thick plate that does not experience overwash, which are validated using experiments where an edge barrier prevents thin-plate overwash. The model accurately reproduces (i) the linear relationship between the transmitted and incident amplitudes for the thick plate, and (ii) the decrease in proportion of incident-wave transmission for the thin plate, as incident steepness increases. Model outputs are used to link the decreasing transmission to wave-energy dissipation in the overwash, particularly where bores collide, and in the surrounding water, particularly at the plate ends. It is shown that most energy dissipation occurs in the overwash for the shortest incident waves tested, and in the surrounding water for the longer incident waves. Further, evidence is given that overwash suppresses plate motions, and causes asymmetry in plate rotations.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Batchelor, G. K. 2000 Introduction to Fluid Dynamics, 3rd edn. Cambridge University Press.CrossRefGoogle Scholar
Bennetts, L. G., Alberello, A., Meylan, M. H., Cavaliere, C., Babanin, A. V. & Toffoli, A. 2015 An idealised experimental model of ocean surface wave transmission by an ice floe. Ocean Model. 96, 8592.CrossRefGoogle Scholar
Bennetts, L. G., Biggs, N. R. T. & Porter, D. 2007 A multi-mode approximation to wave scattering by ice sheets of varying thickness. J. Fluid Mech. 579, 413443.CrossRefGoogle Scholar
Bennetts, L. G., O’Farrell, S. & Uotila, P. 2017 Impacts of ocean-wave-induced breakup of Antarctic sea ice via thermodynamics in a stand-alone version of the CICE sea-ice model. Cryosphere 11 (3), 10351040.CrossRefGoogle Scholar
Bennetts, L. G. & Squire, V. A. 2012 On the calculation of an attenuation coefficient for transects of ice-covered ocean. Proc. R. Soc. Lond. A 468 (2137), 136162.CrossRefGoogle Scholar
Bennetts, L. G. & Williams, T. D. 2014 Water wave transmission by an array of floating discs. Proc. R. Soc. Lond. A 471 (2173), 20140698.CrossRefGoogle Scholar
Boutin, G., Lique, C., Ardhuin, F., Rousset, C., Talandier, C., Accensi, M. & Girard-Ardhuin, F. 2019 Toward a coupled model to investigate wave-sea ice interactions in the Arctic marginal ice zone. Cryosphere Discuss. doi:10.5194/tc-2019-92.Google Scholar
Chen, L., Taylor, P. H., Draper, S. & Wolgamot, H. A. 2019 3-D numerical modelling of greenwater loading on fixed ship-shaped FPSOs. J. Fluids Struct. 84, 283301.CrossRefGoogle Scholar
Deshpande, S. S., Anumolu, L. & Trujillo, M. F. 2012 Evaluating the performance of the two-phase flow solver interFoam. Comput. Sci. Disc. 5 (1), 014016.CrossRefGoogle Scholar
Ducrozet, G., Bonnefoy, F., Le Touze, D. & Ferrant, P. 2012 A modified high-order spectral method for wavemaker modeling in a numerical wave tank. Eur. J. Mech. B/Fluids 34, 1934.CrossRefGoogle Scholar
Emery, W. & Thomson, R. 2001 Data analysis methods in physical oceanography. In Advanced Series on Ocean Engineering, vol. 2. Elsevier Science.Google Scholar
Hegarty, G. M. & Squire, V. A. 2008 A boundary-integral method for the interaction of large-amplitude ocean waves with a compliant floating raft such as a sea-ice floe. J. Engng Maths 62 (4), 355372.CrossRefGoogle Scholar
Higuera, P., Lara, J. L. & Losada, I. J. 2013 Realistic wave generation and active wave absorption for Navier–Stokes models: application to openfoam. Coast. Engng 71, 102118.CrossRefGoogle Scholar
Martnez Ferrer, P. J., Causon, D. M., Qian, L., Mingham, C. G. & Ma, Z. H. 2016 A multi-region coupling scheme for compressible and incompressible flow solvers for two-phase flow in a numerical wave tank. Comput. Fluids 125, 116129.CrossRefGoogle Scholar
McGovern, D. J. & Bai, W. 2014 Experimental study on kinematics of sea ice floes in regular waves. Cold Reg. Sci. Technol. 103, 1530.CrossRefGoogle Scholar
Meylan, M. H. & Bennetts, L. G. 2018 Three-dimensional time-domain scattering of waves in the marginal ice zone. Phil. Trans. R. Soc. Lond. A 376 (2129), 20170334.Google ScholarPubMed
Meylan, M. H., Bennetts, L. G., Cavaliere, C., Alberello, A. & Toffoli, A. 2015 Experimental and theoretical models of wave-induced flexure of a sea ice floe. Phys. Fluids 27 (4), 041704.CrossRefGoogle Scholar
Meylan, M. H. & Squire, V. A. 1994 The response of ice floes to ocean waves. J. Geophys. Res. 99 (C1), 891900.CrossRefGoogle Scholar
Montiel, F., Bennetts, L. G., Squire, V. A., Bonnefoy, F. & Ferrant, P. 2013a Hydroelastic response of floating elastic discs to regular waves. Part 2. Modal analysis. J. Fluid Mech. 723, 629652.CrossRefGoogle Scholar
Montiel, F., Bonnefoy, F., Ferrant, P., Bennetts, L. G., Squire, V. A. & Marsault, P. 2013b Hydroelastic response of floating elastic discs to regular waves. Part 1. Wave basin experiments. J. Fluid Mech. 723, 604628.CrossRefGoogle Scholar
Montiel, F., Squire, V. A. & Bennetts, L. G. 2016 Attenuation and directional spreading of ocean wave spectra in the marginal ice zone. J. Fluid Mech. 790, 492522.CrossRefGoogle Scholar
Nelli, F., Bennetts, L. G., Skene, D. M., Monty, J. P., Lee, J. H., Meylan, M. H. & Toffoli, A. 2017 Reflection and transmission of regular water waves by a thin, floating plate. Wave Motion 70, 209221.CrossRefGoogle Scholar
Orzech, M. D., Shi, F., Veeramony, J., Bateman, S., Calantoni, J. & Kirby, J. T. 2016 Incorporating floating surface objects into a fully dispersive surface wave model. Ocean Model. 102, 1426.CrossRefGoogle Scholar
Roach, L. A., Horvat, C., Dean, S. M. & Bitz, C. M. 2018 An emergent sea ice floe size distribution in a global coupled ocean-sea ice model. J. Geophys. Res. 123 (6), 43224337.Google Scholar
Skene, D. M., Bennetts, L. G., Meylan, M. H. & Toffoli, A. 2015 Modelling water wave overwash of a thin floating plate. J. Fluid Mech. 777, R3.CrossRefGoogle Scholar
Skene, D. M., Bennetts, L. G., Wright, M., Meylan, M. H. & Maki, K. J. 2018 Water wave overwash of a step. J. Fluid Mech. 839, 293312.CrossRefGoogle Scholar
Toffoli, A., Bennetts, L. G., Meylan, M. H., Cavaliere, C., Alberello, A., Elsnab, J. & Monty, J. P. 2015 Sea ice floes dissipate the energy of steep ocean waves. Geophys. Res. Lett. 42 (20), 85478554.CrossRefGoogle Scholar
Urquhart, M.2016 A tutorial of the sixDofRigidBodyMotion library with multiple bodies. Tech. Rep. Chalmers University of Technology.Google Scholar
Williams, T. D., Bennetts, L. G., Squire, V. A., Dumont, D. & Bertino, L. 2013a Wave–ice interactions in the marginal ice zone. Part 1: Theoretical foundations. Ocean Model. 71, 8191.CrossRefGoogle Scholar
Williams, T. D., Bennetts, L. G., Squire, V. A., Dumont, D. & Bertino, L. 2013b Wave–ice interactions in the marginal ice zone. Part 2: Numerical implementation and sensitivity studies along 1D transects of the ocean surface. Ocean Model. 71, 92101.CrossRefGoogle Scholar
Yiew, L. J., Bennetts, L. G., Meylan, M. H., French, B. J. & Thomas, G. A. 2016 Hydrodynamic responses of a thin floating disk to regular waves. Ocean Model. 97, 5264.CrossRefGoogle Scholar
Zhao, X. & Hu, C. 2012 Numerical and experimental study on a 2-D floating body under extreme wave conditions. Appl. Ocean Res. 35, 113.CrossRefGoogle Scholar

Nelli et al. supplementary movie 1

Overwash of thin plastic plate from experimental test with incident period Tinc=0.9s and steepness kainc=0.12.

Download Nelli et al. supplementary movie 1(Video)
Video 11.2 MB

Nelli et al. supplementary movie 2

Example of mesh cells stretching and squeezing to accommodate plate motions.

Download Nelli et al. supplementary movie 2(Video)
Video 7.8 MB

Nelli et al. supplementary movie 3

Horizontal velocity fields around thick plates, for incident period Tinc=0.9s.

Download Nelli et al. supplementary movie 3(Video)
Video 12.2 MB

Nelli et al. supplementary movie 4

As in Movie S3 but for thin plate.

Download Nelli et al. supplementary movie 4(Video)
Video 12.2 MB

Nelli et al. supplementary movie 5

Vorticity fields, for incident period Tinc=0.9s.

Download Nelli et al. supplementary movie 5(Video)
Video 12.2 MB