Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-14T05:51:19.316Z Has data issue: false hasContentIssue false

Effect of deposition temperature on the characteristics of hafnium oxide films deposited by metalorganic chemical vapor deposition using amide precursor

Published online by Cambridge University Press:  03 March 2011

Kenji Takahashi*
Affiliation:
Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
Hiroshi Funakubo
Affiliation:
Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
Shiro Hino
Affiliation:
Precision and Intelligence Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
Makoto Nakayama
Affiliation:
Precision and Intelligence Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
Naoki Ohashi
Affiliation:
National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
Takanori Kiguchi
Affiliation:
Center for Advanced Materials Analysis, Tokyo Institute of Technology 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
Eisuke Tokumitsu
Affiliation:
Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan; and Precision and Intelligence Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
*
a)Address all correspondence to this author. e-mail: kentaka@iem.titech.ac.jp
Get access

Abstract

Hafnium oxide films were deposited on silicon substrates at deposition temperatures ranging from 190 to 500 °C by metalorganic chemical vapor deposition using an amide precursor, Hf[N(C2H5)2]4, and O2 as source materials. The effect of deposition temperature on the deposition characteristics and electrical properties of the resultant films were investigated. Reaction-limited deposition of hafnium oxide films occurred at deposition temperatures under 380 °C. Concentration of residues, such as carbon, nitrogen, and hydrogen, monotonously decreased with increasing deposition temperature, with nitrogen being the most thermally susceptible. However, surface roughness reached a minimum value at 400 °C. Amorphous films were obtained for deposition temperatures up to 450 °C, but obviously became crystallized at 500 °C. Accumulation capacitance increased with increasing deposition temperature but saturated above 400 °C. Moreover, postdeposition annealing at 800 °C caused no obvious degradation in the electrical properties of the film deposited at 400 °C.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Stathis, J.H. and DiMaria, D.J.: Tech. Dig. Int. Electron Device Meet. 167(1998).Google Scholar
2Houssa, M., Degraeve, R., Mertens, P.W., Heyns, M.M., Jeon, J.S., Halliyal, A. and Ogle, B.: J. Appl. Phys. 86 6462 (1999).CrossRefGoogle Scholar
3Lee, S.J., Luan, H.F., Bai, W.P., Lee, C.H., Jeon, T.S., Senzaki, Y., Roberts, D. and Kwong, D.L.: Tech. Dig. Int. Electron Devices Meet. 31(2000).Google Scholar
4Ritala, M., Leskelä, M., Niinistö, L., Prohaska, T., Friedbacher, G. and Grasserbauer, M.: Thin Solid Films 250 72 (1994).CrossRefGoogle Scholar
5Cho, B-O., Wang, J., Sha, L. and Chang, J.P.: Appl. Phys. Lett. 80 1052 (2002).CrossRefGoogle Scholar
6Copel, M., Gribelyuk, M. and Gusev, E.: Appl. Phys. Lett. 76 436 (2000).CrossRefGoogle Scholar
7Wu, X., Landheer, D., Sproule, G.I., Quance, T., Graham, M.J. and Botton, G.A.: J. Vac. Sci. Technol. A 20 1141 (2002).CrossRefGoogle Scholar
8Klein, T.M., Niu, D., Epling, W.S., Li, W., Maher, D.M., Hobbs, C.C., Hegde, R.I., Baumvol, I.J.R. and Parsons, G.N.: Appl. Phys. Lett. 75 4001 (1999).CrossRefGoogle Scholar
9Kolodzey, J., Chowdhury, E.A., Adam, T.N., Qui, G., Rau, I., Olowolafe, J.O., Suehle, J.S. and Chen, Y.: IEEE Trans. Electron Devices 47 121 (1999).CrossRefGoogle Scholar
10Hsu, C.T., Su, Y.K. and Yokoyama, M.: Jpn. J. Appl. Phys. 31 2501 (1992).CrossRefGoogle Scholar
11Kukli, K., Aarik, J., Aidra, A., Siimon, H., Ritala, M. and Leskelä, M.: Appl. Surf. Sci. 112 236 (1997).CrossRefGoogle Scholar
12Lee, B.H., Kang, L., Neih, R., Qi, W. and Lee, J.C.: Appl. Phys. Lett. 76 1926 (2000).CrossRefGoogle Scholar
13Lee, B.H., Kang, L., Qi, W., Neih, R., Jeon, Y., Onishi, K. and Lee, J.C.: Tech. Dig. Int. Electron Devices Meet. 133(1999).Google Scholar
14Hubbard, K.J. and Schlom, D.G.: J. Mater. Res. 11 2757 (1996).CrossRefGoogle Scholar
15Gutowski, M., Jaffe, J.E., Liu, C-L., Stoker, M., Hegde, R.I., Rai, R.S.and Tobin, P.J.: Appl. Phys. Lett. 80 1897 (2002).CrossRefGoogle Scholar
16Kang, L., Onishi, K., Jeon, Y., Lee, B.H., Kang, C., Qi, W-J., Neih, R., Gopalan, S., Choi, R. and Lee, J.C.: Tech. Dig. Int. Electron Devices Meet. 35(2000).Google Scholar
17Smith, R.C., Ma, T., Hoilien, N., Tsung, L.Y., Bevan, M.J., Colombo, L., Roberts, J., Campbell, S.A. and Gladfelter, W.L.: Adv. Mater. Opt. Electron. 10 105 (2000).3.0.CO;2-J>CrossRefGoogle Scholar
18Aarik, J., Aidla, A., Mändar, H., Uustare, T., Kukli, K. and Schuisky, M.: Appl. Surf. Sci. 173 15 (2001).CrossRefGoogle Scholar
19Lee, B.H., Choi, R., Kang, L., Gopalan, S., Nieh, R., Onishi, K., Jeon, Y., Qi, W-J., Kang, C. and Lee, J.C.: Tech. Dig. Int. Electron Devices Meet. 39(2000).Google Scholar
20Pulver, M. and Wahl, G.: Electrochem. Soc. Proc. 97–25 960 (1997).Google Scholar
21Balog, M., Schieber, M., Patai, S. and Michman, M.: J. Cryst. Growth 17 298 (1972).CrossRefGoogle Scholar
22Ritala, M., Kukli, K., Rahtu, A., Räisänen, P.I., Leskalä, M., Sajavaara, T. and Keinonen, J.: Science 288 319 (2000).CrossRefGoogle Scholar
23Choi, K-J., Shin, W-C. and Yoon, S-G.: J. Mater. Res. 18 60 (2003).CrossRefGoogle Scholar
24Park, J., Park, B.K., Cho, M., Hwang, C.S., Oh, K. and Yang, D.Y.: J. Electrochem Soc. 149 G89 (2002).CrossRefGoogle Scholar
25Gordon, R.G., Becker, J., Hausmann, D. and Suh, S.: Chem. Mater. 13 2463 (2001).CrossRefGoogle Scholar
26Ohshita, Y., Ogura, A., Hoshino, A., Hiiro, S. and Machida, H.: J. Cryst. Growth 233 292 (2001).CrossRefGoogle Scholar
27Schaeffer, J., Edwards, N.V., Liu, R., Roan, D., Hradsky, B., Gregory, R., Kulik, J., Duda, E., Contreras, L., Christiansen, J., Zollner, S., Tobin, P., Nguyen, B-Y., Nieh, R., Ramon, M., Rao, R., Hegde, R., Rai, R., Baker, J. and Voight, S.: J. Electrochem. Soc. 150 F67 (2003).CrossRefGoogle Scholar
28Hendrix, B.C., Borovik, A.S., Xu, C., Roeder, J.F., Baum, T.H., Bevan, M.J., Visokay, M.R., Chambers, J.J., Rotondaro, A.L.P., Bu, H. and Colombo, L.: Appl. Phys. Lett. 80 2362 (2002).CrossRefGoogle Scholar
29Elshocht, S.V., Caymax, M., Gendt, S.D., Conard, T., Petry, J., Claes, M., Witters, T., Zhao, C., Brijs, B., Richard, O., Bender, H., Vandervorst, W., Carter, R., Kluth, J., Date, L., Pique, D. and Heyns, M.M. in Novel Materials and Processes for Advanced CMOS, edited by Gardner, M.I., De Gendt, S., J-P, Maria, and S. Stemmer (Mater. Res. Soc. Symp. Proc. 745, Warrendale, PA 2003). N5.15.1.Google Scholar
30Saito, S., Torii, K., Hiratani, M. and Onai, T.: IEEE Electron Device Lett. 23 348 (2002).CrossRefGoogle Scholar