Pt thin films of various thicknesses (30 nm ∼ 200 nm) were deposited on Si wafers with SiO2, Ti, TiO2, or IrO2 buffer layers at various temperatures (room temperature ∼200 °C) by a direct current magnetron sputtering process. The Pt films showed a strong (111)-preferred texture irrespective of the thickness, under-layer, and growth temperature. The authors previously reported [J-E. Lim, D-Y. Park, J.K. Jeong, G. Darlinski, H.J. Kim, and C.S. Hwang, Appl. Phys. Lett. 81, 3224 (2002)] that the films were composed of three kinds of grains with slightly different (111) lattice parameters (bulklike, 1.0% and 2.1% larger). This study details the microstructural variations of the Pt films according to the variations of experimental parameters. The different deposition conditions produced slightly different crystalline structures, but the three different (111) lattice parameters were always found. Epitaxial (200) Pt films on a (200) MgO substrate and a highly (111) textured Au thin film on a SiO2/Si did not show the same splitting in the lattice parameter. The grains with 1.0% and 2.1% larger (111) lattice parameter almost disappeared after postannealing at 1000 °C. However, surface chemical binding of the Pt film before and after annealing was unchanged. Therefore, it is believed that the lattice parameter splitting in the (111) textured Pt film originated from the interfacial grains with the distorted crystal structure due probably to growth stress.