Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-05T00:34:01.368Z Has data issue: false hasContentIssue false

Growth behavior of evaporated porous thin films

Published online by Cambridge University Press:  31 January 2011

D. Vick*
Affiliation:
Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada T6G 2V4
T. Smy
Affiliation:
Department of Electronics, Carleton University, Ottawa, Ontario, Canada K1S 5B6
M. J. Brett
Affiliation:
Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada T6G 2V4
*
a) Address all correspondence to this author. e-mail: vick@ee.ualberta.ca
Get access

Abstract

Recent experimental work by a number of researchers has demonstrated that unusual high porosity thin films may be obtained in physical deposition systems by combining glancing angle deposition with in situ substrate motion control. The microstructure of these films consists of isolated columns engineered into shapes such as helices, posts, or chevrons. Due to the isolated nature of the columns, the films present a unique opportunity to study fundamental thin film growth behavior and, in particular, the influence of the self-shadowing mechanism in three dimensions. Apart from this academic motivation, there is the need to characterize the physical constraints imposed on the engineering of these films. In particular, this study will have implications for the realization of isolated, periodically arranged nanostructures envisioned for certain applications such as photonic band gap crystals. Results from an ongoing study of growth dynamics, morphology, porosity, and scaling behavior, and the dependence of these features on deposition parameters are presented.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Nieuwenhuizen, J.M. and Haanstra, H.B., Philips Tech. Rev. 27, 115 (1965/1966).Google Scholar
2.Kranenburg, H. van and Lodder, C., Mater. Sci. Eng. R11, 295 (1994).CrossRefGoogle Scholar
3.Motohiro, T. and Taga, Y., Appl. Opt. 28, 2466 (1989).CrossRefGoogle Scholar
4.Young, N.O. and Kowal, J., Nature 183, 104 (1959).CrossRefGoogle Scholar
5.Robbie, K., Friedrich, L.J., Dew, S.K., Smy, T., and Brett, M.J., J. Vac. Sci. Technol. A 13, 1032 (1995).CrossRefGoogle Scholar
6.Robbie, K., Brett, M.J., and Lakhtakia, A., Nature 384, 616 (1996).CrossRefGoogle Scholar
7.Robbie, K. and Brett, M.J., J. Vac. Sci. Technol. A 15, 1460 (1997).CrossRefGoogle Scholar
8.Messier, R., Gehrke, T., Frankel, C., Venugopal, V.C., Otano, W., and Lakhtakia, A., J. Vac. Sci. Technol. A 15, 2148 (1997).CrossRefGoogle Scholar
9.Sit, J., Vick, D., Robbie, K., and Brett, M.J., J. Mater. Res. 14, 1197 (1999).CrossRefGoogle Scholar
10.Vick, D., Tsui, Y.Y., Brett, M.J., and Fedosejevs, R., Thin Solid Films 350, 49 (1999).CrossRefGoogle Scholar
11.Lui, F., Umlor, M.T., Shen, L., Weston, J., Eads, W., Barnard, J.A., and Mankey, G.J., J. Appl. Phys. 85, 5486 (1999).Google Scholar
12.Messier, R., Venugopal, V.C., and Sunal, P.D., J. Vac. Sci. Technol. A 18, 1538 (2000).CrossRefGoogle Scholar
13.Suzuki, M., Ito, T., and Taga, Y., Appl. Phys. Lett. 78, 3968 (2001).CrossRefGoogle Scholar
14.Suzuki, M. and Taga, Y., Jpn. J. Appl. Phys. 40, L358 (2001).Google Scholar
15.Robbie, K. and Brett, M.J., U.S. Patent No. 5 866 204.Google Scholar
16.Robbie, K., Sit, J.C., and Brett, M.J., J. Vac. Sci. Technol. B 16, 1115 (1998).CrossRefGoogle Scholar
17.Sit, J.C., Broer, D.J., and Brett, M.J., Liquid Crystals 27, 387 (2000).CrossRefGoogle Scholar
18.Harris, K.D., McBride, J.R., Nietering, K.E., and Brett, M.J., Sens. Mater. 13, 225 (2001).Google Scholar
19.Harris, K.D., Westra, K.L., and Brett, M.J., Electrochem. Solid-State Lett. 4, C39 (2001).CrossRefGoogle Scholar
20.Lakhtakia, A., Messier, R., Brett, M.J., and Robbie, K., Innovations Mater. Res. 1, 165 (1996).Google Scholar
21.Hodgkinson, I.J., Wu, Q.H., and McPhun, A.J., J. Vac. Sci. Technol. B 16, 2811 (1998).CrossRefGoogle Scholar
22.Monteiro, O.R., Vizir, A., and Brown, I.G., J. Phys. D: Appl. Phys. 31, 3188 (1998).CrossRefGoogle Scholar
23.Slepyan, G.Y. and Maksimenko, A.S., Opt. Eng. 37, 2843 (1998).CrossRefGoogle Scholar
24.Hodgkinson, I.J., Wu, Q.H., Lakhtakia, A., and McCall, M., Opt. Comm. 177, 79 (2000).CrossRefGoogle Scholar
25.Hodgkinson, I.J. and Wu, Q.H., Adv. Mater. 13, 889 (2001).3.0.CO;2-K>CrossRefGoogle Scholar
26.Toader, O. and John, S., Science 292, 1133 (1998).CrossRefGoogle Scholar
27.Kennedy, S.R., Brett, M.J., Toader, O., and John, S., Nano Lett. 2, 59 (2002).CrossRefGoogle Scholar
28.Malac, M., Egerton, R., Brett, M.J., and Dick, B., J. Vac. Sci. Technol. B 17, 2671 (1999).CrossRefGoogle Scholar
29.Dick, B., Brett, M.J., Smy, T., Belov, M., and Freeman, M.R., J. Vac. Sci. Technol. B 19, 1813 (2001).CrossRefGoogle Scholar
30.Malac, M. and Egerton, R., J. Vac. Sci. Technol. A 19, 158 (2001).CrossRefGoogle Scholar
31.Malac, M. and Egerton, R., Nanotechnology 12, 11 (2001).CrossRefGoogle Scholar
32.Movchan, B.A. and Demchishin, A.V., Phys. Metallogr. 28, 83 (1969).Google Scholar
33.Tang, C., Alexander, S., and Bruinsma, R., Phys. Rev. Lett. 64, 772 (1990).CrossRefGoogle Scholar
34.Messier, R. and Yehoda, J.E., J. Appl. Phys. 58, 3739 (1985).CrossRefGoogle Scholar
35.Yehoda, J.E. and Messier, R., Appl. Surf. Sci. 22/23, 590 (1985).CrossRefGoogle Scholar
36.Gomez-Rodriguez, J.M., Baro, A.M., and Salvarezza, R.C., J. Vac. Sci. Technol. B 9, 495 (1991).CrossRefGoogle Scholar
37.Herrasti, P., Ocon, P., Vazquez, L., Salvarezza, R.C., Vara, J.M., and Arvia, A.J., Phys. Rev. A 45, 7440 (1992).CrossRefGoogle Scholar
38.Salvarezza, R.C., Vazquez, L., Herrasti, P., Ocon, P., Vara, J.M., and Arvia, A.J., Europhys. Lett. 20, 727 (1992).CrossRefGoogle Scholar
39.Ballac, D. Le, Niklasson, G.A., and Granqvist, C.G., Europhys. Lett. 32, 155 (1995).CrossRefGoogle Scholar
40.Salvadori, M.C., Silveira, M.G., and Cattani, M., Thin Solid Films 354, 1 (1999).CrossRefGoogle Scholar
41.Villarrubia, J.S., J. Res. Natl. Inst. Stand. Technol. 102, 425 (1997).CrossRefGoogle Scholar
42.Dirks, A.G. and Leamy, H.J., Thin Solid Films 47, 219 (1977).CrossRefGoogle Scholar
43.Tait, R.N., Smy, T., and Brett, M.J., J. Vac. Sci. Technol. A 10, 1518 (1992).CrossRefGoogle Scholar
44.Meakin, P. and Krug, J., Phys. Rev. A 40, 3390 (1992).CrossRefGoogle Scholar
45.Levine, S.W., Engstrom, J.R., and Clancey, P.. Surf. Sci. 401, 112 (1998).CrossRefGoogle Scholar
46.Smy, T., Vick, D., Brett, M.J., Dew, S.K., Wu, A.T., Sit, J.C., and Harris, K.D., J. Vac. Sci. Technol. A 18, 2507 (2000).CrossRefGoogle Scholar
47.Kardar, M., Parisi, G., and Zhang, Y-C., Phys. Rev. Lett 56, 889 (1986).CrossRefGoogle Scholar
48.Drotar, J.T., Zhao, Y-P., Lu, T-M., and Wang, G-C., Growth, in Evolution and Properties of Surfaces, Thin Films and Self-Organized Structures, edited by Moss, S.C., Poker, D.B., and Ila, D. (Mater. Res. Soc. Symp. Proc. 648, Warrendale, PA, 2000), p. 7.9.Google Scholar
49.Barabasi, A-L. and Stanley, H.E., Fractal Concepts in Surface Growth (Cambridge University Press, Cambridge, U.K., 1995).CrossRefGoogle Scholar
50.Family, F. and Vicsek, T., J. Phys. A 18, L75 (1985).CrossRefGoogle Scholar
51.Drotar, J.T., Zhao, Y-P., Lu, T-M., and Wang, G-C., Phys. Rev. B 62, 2118 (2001).CrossRefGoogle Scholar
52.Dongmo, S., Vautrot, P., Bonnet, N., and Troyon, M., Appl. Phys. A 66, S819 (1998).CrossRefGoogle Scholar