In this work, (Ba1−xCex)Ti1−x/4(VTi)x/4O3 ceramics with x = 0.02, 0.04, 0.06, and 0.08 (VTi denotes titanium vacancies) were synthesized by the mixed-oxide method. The results of x-ray diffraction analysis and scanning electron microscopy show that all the samples are monophasic. The crystalline structure can be indexed as tetragonal for the samples with x ≤ 0.06, but as cubic for x = 0.08. Three phase transitions were observed in the temperature dependence of the dielectric permittivity, similar to those observed in pure BaTiO3, and the three phase transition temperatures (Tc, T1, and T2) shifted to lower temperatures with the rates of −18, −12, and −7 K per molar percentage of Ce3+, respectively. This is quite different from that observed in BaTiO3 with Ce substitution at the Ti-site, in which Tc shifted to a lower temperature, and T1 and T2 to higher temperatures. The permittivity maximum increased with increasing Ce content, which is mainly attributed to an increase in the grain size.