Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-15T10:30:36.720Z Has data issue: false hasContentIssue false

INTERPOLATION OF VECTOR-VALUED REAL ANALYTIC FUNCTIONS

Published online by Cambridge University Press:  24 March 2003

JOSÉ BONET
Affiliation:
Departamento de Matemática Aplicada, ETSI Arquitectura, Universidad Politécnica de Valencia, E-46071 Valencia, Spainjbonet@mat.upv.es
PAWEŁ DOMAŃSKI
Affiliation:
Faculty of Mathematics and Computer Science, A Mickiewicz University, Umultowska 87, 61-614 Poznań, Polanddomanski@amu.edu.pl Institute of Mathematics, Polish Academy of Science, Poznań, Poland
DIETMAR VOGT
Affiliation:
Institute of Mathematics, Polish Academy of Science, Poznań, Poland
Get access

Abstract

Let $\omega \subseteq {\bb R}^d$ be an open domain. The sequentially complete DF-spaces $E$ are characterized such that for each (some) discrete sequence $(z_n) \subseteq \omega$ , a sequence of natural numbers $(k_n)$ and any family $(x_{n, \alpha})_{n \in {\bb N}, \vert \alpha\vert \leqslant k_n} \subseteq E$ the infinite system of equations \[ \left(\frac{\partial^{\vert \alpha\vert } f}{\partial z^{\alpha}}\right)(z_n) = x_{n,\alpha} \quad \hbox{for } n \in {\bb N}, \alpha \in {\bb N}^{d}, \vert \alpha\vert \leqslant k_n, \] has an $E$ -valued real analytic solution $f$ .

Type
Notes and Papers
Copyright
The London Mathematical Society, 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)