No CrossRef data available.
Article contents
108.05 Ramanujan’s proof of Bertrand’s postulate
Published online by Cambridge University Press: 15 February 2024
Abstract
An abstract is not available for this content so a preview has been provided. As you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
- Type
- Notes
- Information
- Copyright
- © The Authors, 2024 Published by Cambridge University Press on behalf of The Mathematical Association
References
Ramanujan, S., A Proof of Bertrand’s Postulate, J. Indian Math. Society (1919) pp. 181–182.Google Scholar
Wikipedia Proof of Bertrands Postulate.Google Scholar
Erdős, P., Beweis eines Satzes von Tschebyshef, Acta Sci. Math. (Szeged) 5 (1930-1932) pp. 194-198 (in German)Google Scholar
Landau, E., Handbuch der Lehre von der Verteilung der Primzahlen, Vol. 1, B. G. Teubner (1909) Leipzig und Berlin. The Michigan Historical Reprint Series, The University of Michigan University Library.Google Scholar
Erdős, P., A theorem of Sylvester and Schur, J. London Math. Soc. 9 (1934) pp. 191–258.Google Scholar
Meher, J. and Ram Murty, M., Ramanujan’s proof of Bertrand’s postulate, Amer. Math. Monthly 120 (2013) pp. 650–653.CrossRefGoogle Scholar
You have
Access