Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-13T05:29:52.453Z Has data issue: false hasContentIssue false

108.05 Ramanujan’s proof of Bertrand’s postulate

Published online by Cambridge University Press:  15 February 2024

Allan J. Silberger*
Affiliation:
Cleveland State University, Cleveland, OH 44115 USA 1573 Kew Rd, Cleveland Hts, OH 44118 USA e-mail: allanjsilberger@gmail.com
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Notes
Copyright
© The Authors, 2024 Published by Cambridge University Press on behalf of The Mathematical Association

References

Ramanujan, S., A Proof of Bertrand’s Postulate, J. Indian Math. Society (1919) pp. 181182.Google Scholar
Wikipedia Proof of Bertrands Postulate.Google Scholar
Erdős, P., Beweis eines Satzes von Tschebyshef, Acta Sci. Math. (Szeged) 5 (1930-1932) pp. 194-198 (in German)Google Scholar
Landau, E., Handbuch der Lehre von der Verteilung der Primzahlen, Vol. 1, B. G. Teubner (1909) Leipzig und Berlin. The Michigan Historical Reprint Series, The University of Michigan University Library.Google Scholar
Erdős, P., A theorem of Sylvester and Schur, J. London Math. Soc. 9 (1934) pp. 191258.Google Scholar
Meher, J. and Ram Murty, M., Ramanujan’s proof of Bertrand’s postulate, Amer. Math. Monthly 120 (2013) pp. 650653.CrossRefGoogle Scholar