Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-26T07:00:29.555Z Has data issue: false hasContentIssue false

108.31 Generalised Thales intercept theorem

Published online by Cambridge University Press:  23 August 2024

Francesco Laudano*
Affiliation:
Via L. Pirandello, 37 - 86100 - Campobasso - Italy e-mail: francesco.laudano@unimol.it
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Notes
Copyright
© The Authors, 2024 Published by Cambridge University Press on behalf of The Mathematical Association

References

Heath, T., Greek mathematics and science, Math. Gaz. 32 (July 1948) pp. 120133.CrossRefGoogle Scholar
Heath, T., A history of greek mathematics, Volume 1. Oxford University Press (1921).Google Scholar
Fletcher, C. R., Thales–our founder?, Math. Gaz. 66 (December 1982) pp. 266272.CrossRefGoogle Scholar
Stillwell, J., The four pillars of geometry, Springer (2005).CrossRefGoogle Scholar
Moise, E., E.G. from an advanced standpoint (3rd edn.) Addison-Wesley (1990).Google Scholar
Lord, N., Maths bite: averaging polygons, Math. Gaz. 92 (March 2008) p. 134.CrossRefGoogle Scholar
Coxeter, H. S. M., Introduction to geometry (2nd edn.) Wiley (1969).Google Scholar
Floater, M. S., Generalized barycentric coordinates and applications, Acta Numer. 29 (2015) pp. 161214.CrossRefGoogle Scholar
Laudano, F., Generalised averages of polygons, Math. Gaz. 107 (November 2023) pp. 528530.CrossRefGoogle Scholar
Laudano, F., Generalized Varignon’s and medial triangle theorems, Commun. Korean Math. Soc. 38 (2023) (2) pp. 561573.Google Scholar