We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
An abstract is not available for this content so a preview has been provided. Please use the Get access link above for information on how to access this content.
Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
References
1
Leversha, G., The geometry of the triangle, The United Kingdom Mathematics Trust, Pathways, No. 2, University of Leeds (2013).Google Scholar
2
Yff, P., On the Brocard points of a triangle, Amer. Math. Monthly67 (1960) pp. 520–525.CrossRefGoogle Scholar
3
Shail, R., Some properties of Brocard points, Math. Gaz.80 (November 1996) pp. 485–491.CrossRefGoogle Scholar
4
Johnson, R. A., Advanced Euclidean Geometry, Dover Publications, New York (1929).Google Scholar
5
Abu-Saymeh, S. and Hajja, M., Some Brocard-like points of a triangle, Forum Geom.5 (2005) pp. 65–74.Google Scholar
6
Yff, P., An analogue of the Brocard points, Amer. Math. Monthly, 70 (1963) pp. 495–501.CrossRefGoogle Scholar
7
Goormaghtigh, M. R., Sur deux points du plan d’un triangle et sur une généralisation des points de Brocard, Ann. de. Mathémat., 4° série, t. XVIII, (Novembre 1918) pp. 417–424.Google Scholar
8
Niven, I., Maxima and minima without calculus, The Dolciani Mathematical Expositions, No. 6, MAA, Washington, D. C. (1981).Google Scholar
9
Isaacs, I. M., Geometry for college students, AMS, Providence, RI (2001).Google Scholar
10
Kuczma, M. E., International Mathematical Olympiads, 1986-1999, MAA, Washington, D. C. (2003).CrossRefGoogle Scholar
11
Rigby, J., A method for obtaining related inequalities, with applications, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., 412-460 (1973), pp. 217–226.Google Scholar
12
Bradley, C. J., Challenges in geometry, Oxford University Press, New York (2005).Google Scholar
13
Clement, P. E., The concurrence of perpendiculars, Amer. Math. Monthly, 65 (1958) pp. 601–605.CrossRefGoogle Scholar
14
Andreescu, T., Korsky, S. and Pohoata, C., Lemmas in Olympiad geometry, XYZ Press, LLC (2016).Google Scholar
15
Choi, M. D., Lam, T. Y. and Reznick, B., Even symmetric sextics, Math. Z.195 (1987) pp. 559–580.CrossRefGoogle Scholar
16
Hajja, M., Copositive symmetric cubic forms, Amer. Math. Monthly, 112 (2005) pp. 462–466.CrossRefGoogle Scholar
17
Hajja, M., Radical and rational means of degree 2, Math. Inequal. Appl.6 (2003) pp. 581–593.Google Scholar
18
Habeb, J. and Hajja, M., A method for establishing certain trigonometric inequalities, J. Inequal. Pure Appl. Math. (JIPAM)8 (2007) Art. 29.Google Scholar