No CrossRef data available.
Article contents
Notes on the Brocard points and angles of a triangle
Published online by Cambridge University Press: 02 March 2020
Abstract
An abstract is not available for this content so a preview has been provided. Please use the Get access link above for information on how to access this content.
- Type
- Articles
- Information
- Copyright
- © Mathematical Association 2020
References
Leversha, G., The geometry of the triangle, The United Kingdom Mathematics Trust, Pathways, No. 2, University of Leeds (2013).Google Scholar
Yff, P., On the Brocard points of a triangle, Amer. Math. Monthly 67 (1960) pp. 520–525.CrossRefGoogle Scholar
Shail, R., Some properties of Brocard points, Math. Gaz. 80 (November 1996) pp. 485–491.CrossRefGoogle Scholar
Abu-Saymeh, S. and Hajja, M., Some Brocard-like points of a triangle, Forum Geom. 5 (2005) pp. 65–74.Google Scholar
Yff, P., An analogue of the Brocard points, Amer. Math. Monthly, 70 (1963) pp. 495–501.CrossRefGoogle Scholar
Goormaghtigh, M. R., Sur deux points du plan d’un triangle et sur une généralisation des points de Brocard, Ann. de. Mathémat., 4° série, t. XVIII, (Novembre 1918) pp. 417–424.Google Scholar
Niven, I., Maxima and minima without calculus, The Dolciani Mathematical Expositions, No. 6, MAA, Washington, D. C. (1981).Google Scholar
Kuczma, M. E., International Mathematical Olympiads, 1986-1999, MAA, Washington, D. C. (2003).CrossRefGoogle Scholar
Rigby, J., A method for obtaining related inequalities, with applications, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., 412-460 (1973), pp. 217–226.Google Scholar
Clement, P. E., The concurrence of perpendiculars, Amer. Math. Monthly, 65 (1958) pp. 601–605.CrossRefGoogle Scholar
Andreescu, T., Korsky, S. and Pohoata, C., Lemmas in Olympiad geometry, XYZ Press, LLC (2016).Google Scholar
Choi, M. D., Lam, T. Y. and Reznick, B., Even symmetric sextics, Math. Z. 195 (1987) pp. 559–580.CrossRefGoogle Scholar
Hajja, M., Copositive symmetric cubic forms, Amer. Math. Monthly, 112 (2005) pp. 462–466.CrossRefGoogle Scholar
Hajja, M., Radical and rational means of degree 2, Math. Inequal. Appl. 6 (2003) pp. 581–593.Google Scholar
Habeb, J. and Hajja, M., A method for establishing certain trigonometric inequalities, J. Inequal. Pure Appl. Math. (JIPAM) 8 (2007) Art. 29.Google Scholar