Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-13T01:42:50.331Z Has data issue: false hasContentIssue false

Spatial Resolution in Atom Probe Tomography

Published online by Cambridge University Press:  18 January 2010

Baptiste Gault*
Affiliation:
Australian Key Centre for Microscopy & Microanalysis, The University of Sydney, NSW 2006, Australia Department of Materials, University of Oxford, Parks Road, Oxford OX13PH, United Kingdom
Michael P. Moody
Affiliation:
Australian Key Centre for Microscopy & Microanalysis, The University of Sydney, NSW 2006, Australia
Frederic De Geuser
Affiliation:
Science et Ingénierie des MAtériaux et Procédés (SIMaP) – UMR 5266 CNRS-Grenoble INP-UJF, Saint-Martin-d'Hères, France
Alex La Fontaine
Affiliation:
Australian Key Centre for Microscopy & Microanalysis, The University of Sydney, NSW 2006, Australia
Leigh T. Stephenson
Affiliation:
Australian Key Centre for Microscopy & Microanalysis, The University of Sydney, NSW 2006, Australia
Daniel Haley
Affiliation:
Australian Key Centre for Microscopy & Microanalysis, The University of Sydney, NSW 2006, Australia
Simon P. Ringer
Affiliation:
Australian Key Centre for Microscopy & Microanalysis, The University of Sydney, NSW 2006, Australia
*
Corresponding author. E-mail: baptiste.gault@materials.ox.ac.uk
Get access

Abstract

This article addresses gaps in definitions and a lack of standard measurement techniques to assess the spatial resolution in atom probe tomography. This resolution is known to be anisotropic, being better in-depth than laterally. Generally the presence of atomic planes in the tomographic reconstruction is considered as being a sufficient proof of the quality of the spatial resolution of the instrument. Based on advanced spatial distribution maps, an analysis methodology that interrogates the local neighborhood of the atoms within the tomographic reconstruction, it is shown how both the in-depth and the lateral resolution can be quantified. The influences of the crystallography and the temperature are investigated, and models are proposed to explain the observed results. We demonstrate that the absolute value of resolution is specimen specific.

Type
Atom Probe Tomography
Copyright
Copyright © Microscopy Society of America 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bas, P., Bostel, A., Deconihout, B. & Blavette, D. (1995). A general protocol for the reconstruction of 3D atom probe data. Appl Surf Sci 87(88), 298304.CrossRefGoogle Scholar
Batson, P.E., Dellby, N. & Krivanek, O.L. (2002). Sub-angstrom resolution using aberration corrected electron optics. Nature 418(6898), 617620.CrossRefGoogle ScholarPubMed
Blavette, D., Bostel, A., Sarrau, J.M., Deconihout, B. & Menand, A. (1993a). An atom-probe for 3-dimensional tomography. Nature 363(6428), 432435.CrossRefGoogle Scholar
Blavette, D., Cadel, E., Fraczkiewicz, A. & Menand, A. (1999). Three-dimensional atomic-scale imaging of impurity segregation to line defects. Science 286, 5448.CrossRefGoogle ScholarPubMed
Blavette, D., Deconihout, B., Bostel, A., Sarrau, J.M., Bouet, M. & Menand, A. (1993b). The tomographic atom-probe—A quantitative 3-dimensional nanoanalytical instrument on an atomic-scale. Rev Sci Instrum 64(10), 29112919.CrossRefGoogle Scholar
Bunton, J.H., Olson, J.D., Lenz, D.R. & Kelly, T.F. (2007). Advances in pulsed-laser atom probe: Instrument and specimen design for optimum performance. Microsc Microanal 13, 418427.CrossRefGoogle ScholarPubMed
Cerezo, A., Clifton, P.H., Galtrey, M.J., Humphreys, C.J., Kelly, T.F., Larson, D.J., Lozano-Perez, S., Marquis, E.A., Oliver, R.A., Sha, G., Thompson, K., Zandbergen, M. & Alvis, R.L. (2007a). Atom probe tomography today. Mat Today 10(12), 3642.CrossRefGoogle Scholar
Cerezo, A., Clifton, P.H., Gomberg, A. & Smith, G.D.W. (2007b). Aspects of the performance of a femtosecond laser-pulsed 3-dimensional atom probe. Ultramicroscopy 107(9), 720725.CrossRefGoogle ScholarPubMed
Cerezo, A., Clifton, P.H., Lozano-Perez, S., Panayi, P., Sha, G. & Smith, G.D.W. (2007c). Overview: Recent progress in three-dimensional atom probe instruments and applications. Microsc Microanal 13(6), 408417.CrossRefGoogle ScholarPubMed
Cerezo, A., Godfrey, T.J. & Smith, G.D.W. (1988). Application of a position-sensitive detector to atom probe microanalysis. Rev Sci Instrum 59, 862866.CrossRefGoogle Scholar
Chen, Y.C. & Seidman, D.N. (1971a). Atomic resolution of a field ion microscope. Surf Sci 26(1), 6184.CrossRefGoogle Scholar
Chen, Y.C. & Seidman, D.N. (1971b). Field ionization characteristics of individual atomic planes. Surf Sci 27(2), 231255.CrossRefGoogle Scholar
Clouet, E., Lae, L., Epicier, T., Lefebvre, W., Nastar, M. & Deschamps, A. (2006). Complex precipitation pathways in multicomponent alloys. Nat Mater 5(6), 482488.CrossRefGoogle ScholarPubMed
De Geuser, F., Gault, B., Bostel, A. & Vurpillot, F. (2007). Correlated field evaporation as seen by atom probe tomography. Surf Sci 601(2), 536543.CrossRefGoogle Scholar
Drechsler, M. (1992). The thermal faceting of surfaces by low coverage adsorption—A model and analyses of field-emission microscope experiments. Surf Sci 266(1–3), 110.CrossRefGoogle Scholar
Drechsler, M. & Wolf, D. (1958). Zur Analyse von Feldionenmikroscop-Aufnahmen mit atomarer Auflösung. In Proceedings 4th International Conference on Electron Microscopy, pp. 835848. Berlin: Springer.Google Scholar
Gault, B., De Geuser, F., Stephenson, L.T., Moody, M.P., Muddle, B.C. & Ringer, S.P. (2008). Estimation of the reconstruction parameters for atom probe tomography. Microsc Microanal 14(4), 296305.CrossRefGoogle Scholar
Gault, B., Moody, M.P., De Geuser, F., Haley, D., Stephenson, L.T. & Ringer, S.P. (2009a). Origin of the spatial resolution in atom probe microscopy. Appl Phys Lett 95(3), 034103.CrossRefGoogle Scholar
Gault, B., Moody, M.P., De Geuser, F., Tsafnat, G., La Fontaine, A., Stephenson, L.T., Haley, D. & Ringer, S.P. (2009b). Advances in the calibration of atom probe tomographic reconstruction. J Appl Phys 105, 034913.CrossRefGoogle Scholar
Gault, B., Vurpillot, F., Vella, A., Gilbert, M., Menand, A., Blavette, D. & Deconihout, B. (2006). Design of a femtosecond laser assisted tomographic atom probe. Rev Sci Instrum 77, 043705.CrossRefGoogle Scholar
Geiser, B.P., Kelly, T.F., Larson, D.J., Schneir, J. & Roberts, J.P. (2007). Spatial distribution maps for atom probe tomography. Microsc Microanal 13(6), 437447.CrossRefGoogle ScholarPubMed
Geiser, B.P., Larson, D.J., Oltman, E., Gerstl, S.S., Reinhard, D.A., Kelly, T.F. & Prosa, T.J. (2009). Wide-field-of-view atom probe reconstruction. Microsc Microanal 15(S2), 292293.CrossRefGoogle Scholar
Haider, M., Uhlemann, S., Schwan, E., Rose, H., Kabius, B. & Urban, K. (1998). Electron microscopy image enhanced. Nature 392(6678), 768769.CrossRefGoogle Scholar
Haydock, R. & Kingham, D.R. (1980). Post-ionization of field-evaporated ions. Phys Rev Lett 44, 15201523.CrossRefGoogle Scholar
Kellogg, G.L. & Tsong, T.T. (1980). Pulsed-laser atom-probe field-ion microscopy. J Appl Phys 51(2), 11841193.CrossRefGoogle Scholar
Kelly, T.F., Geiser, B.P. & Larson, D.J. (2007). Definition of spatial resolution in atom probe tomography. Microsc Microanal 13(S2), 16041605.CrossRefGoogle Scholar
Kelly, T.F., Gribb, T.T., Olson, J.D., Martens, R.L., Shepard, J.D., Wiener, S.A., Kunicki, T.C., Ulfig, R.M., Lenz, D.R., Strennen, E.M., Oltman, E., Bunton, J.H. & Strait, D.R. (2004). First data from a commercial local electrode atom probe (LEAP). Microsc Microanal 10(3), 373383.CrossRefGoogle ScholarPubMed
Kingham, D.R. (1982). The post-ionization of field evaporated ions: A theoretical explanation of multiple charge states. Surf Sci 116, 273301.CrossRefGoogle Scholar
Kisielowski, C., Erni, R. & Freitag, B. (2008). Object-defined resolution below 0.5Å in transmission electron microscopy—Recent advances on the TEAM 0.5 instrument. Microsc Microanal 14(S2), 7879.CrossRefGoogle Scholar
Larson, D.J., Russell, K.F. & Miller, M.K. (1999). Effect of specimen aspect ratio on the reconstruction of atom probe tomography data. Microsc Microanal 5, 930931.CrossRefGoogle Scholar
Mao, Z.G., Sudbrack, C.K., Yoon, K.E., Martin, G. & Seidman, D.N. (2007). The mechanism of morphogenesis in a phase-separating concentrated multicomponent alloy. Nat Mater 6(3), 210216.CrossRefGoogle Scholar
Miller, M.K. (1987). The effects of local magnification and trajectory aberrations on atom probe analysis. J Phys-Paris 48(C-6), 565570.CrossRefGoogle Scholar
Miller, M.K., Cerezo, A., Hetherington, M.G. & Smith, G.D.W. (1996). Atom Probe Field Ion Microscopy. Oxford: UK: Oxford Science Publications, Clarendon Press.CrossRefGoogle Scholar
Miller, M.K. & Hetherington, M.G. (1991). Local magnification effects in the atom probe. Surf Sci 246, 442449.CrossRefGoogle Scholar
Miller, M.K. & Kenik, E.A. (2004). Atom probe tomography: A technique for nanoscale characterization. Microsc Microanal 10(3), 336341.CrossRefGoogle ScholarPubMed
Moody, M.P., Gault, B., Stephenson, L.T., Haley, D. & Ringer, S.P. (2009). Qualification of the tomographic reconstruction in atom probe by advanced spatial distribution map techniques. Ultramicroscopy 109, 815824.CrossRefGoogle ScholarPubMed
Moore, A.J.W. (1981). The simulation of FIM desorption patterns. Philos Mag 43(3), 803814.CrossRefGoogle Scholar
Moore, A.J.W. & Spink, J.A. (1969). Field evaporation of tungsten atoms. Surf Sci 17(1), 262266.CrossRefGoogle Scholar
Müller, E.W. (1956). Field desorption. Phys Rev 102(3), 618624.CrossRefGoogle Scholar
Müller, E.W. (1957). Study of atomic structure of metal surfaces in the field ion microscope. J Appl Phys 28(1), 16.CrossRefGoogle Scholar
Müller, E.W. (1965). Field ion microscopy. Science 149(3684), 591601.CrossRefGoogle ScholarPubMed
Müller, E.W., Nakamura, S., Nishikawa, O. & McLane, S.B. (1965). Gas-surface interactions and field-ion microscopy of nonrefractory metals. J Appl Phys 36(8), 24962503.CrossRefGoogle Scholar
Müller, E.W., Panitz, J.A. & McLane, S.B. (1968). Atom-probe field ion microscope. Rev Sci Instrum 39(1), 8386.CrossRefGoogle Scholar
Nishikawa, O., Ohtani, Y., Maeda, K., Watanabe, M. & Tanaka, K. (2000). Development of the scanning atom probe and atomic level analysis. Mater Charact 44, 2957.CrossRefGoogle Scholar
Ringer, S.P. (2006). Advanced nanostructural analysis of aluminium alloys using atom probe tomography. Mater Sci Forum 519-521, 2534.Google Scholar
Schmidt, W.A. & Ernst, N. (1992). On the binding strength of surface metal atoms in a high-electric-field—Face-specific appearance energy measurements of field evaporated rhodium ions. Vacuum 45, 255258.CrossRefGoogle Scholar
Seidman, D.N. (2007). Three-dimensional atom-probe tomography: Advances and applications. Ann Rev Mater Res 37, 127158.CrossRefGoogle Scholar
Stiller, K. & Andren, H.O. (1982). Faulty field evaporation at di-vacancies in [222] tungsten. Surf Sci 114(2–3), L57L61.CrossRefGoogle Scholar
Tsong, T.T. (1990). Atom Probe Field Ion Microscopy, Field Emission, and Surfaces and Interfaces at Atomic Resolution. New York: Cambridge University Press.Google Scholar
Tsong, T.T. & Kellogg, G. (1975). Direct observation of the directional walk of single adatoms and the adatom polarizability. Phys Rev B 12, 13431353.CrossRefGoogle Scholar
Tsong, T.T., McLane, S.B. & Kinkus, T. (1982). Pulsed-laser time-of-flight atom-probe field ion microscope. Rev Sci Instrum 53(9), 14421448.CrossRefGoogle Scholar
Van Dyck, D., Van Aert, S. & den Dekker, A.J. (2004). Physical limits on atomic resolution. Microsc Microanal 10, 153157.CrossRefGoogle ScholarPubMed
Vurpillot, F., Bostel, A. & Blavette, D. (2000a). Trajectory overlaps and local magnification in three-dimensional atom probe. Appl Phys Lett 76(21), 31273129.CrossRefGoogle Scholar
Vurpillot, F., Bostel, A., Cadel, E. & Blavette, D. (2000b). The spatial resolution of 3D atom probe in the investigation of single-phase materials. Ultramicroscopy 84(3–4), 213224.CrossRefGoogle ScholarPubMed
Vurpillot, F., Bostel, A., Menand, A. & Blavette, D. (1999). Trajectories of field emitted ions in 3D atom-probe. Eur Phys J-Appl Phys 6(2), 217221.CrossRefGoogle Scholar
Vurpillot, F., Cerezo, A., Blavette, D. & Larson, D.J. (2004a). Modeling image distortions in 3DAP. Microsc Microanal 10(3), 384390.CrossRefGoogle ScholarPubMed
Vurpillot, F., Da Costa, G., Menand, A. & Blavette, D. (2001). Structural analyses in three-dimensional atom probe: A Fourier approach. J Microsc 203, 295302.Google Scholar
Vurpillot, F., De Geuser, F., Da Costa, G. & Blavette, D. (2004b). Application of Fourier transform and autocorrelation to cluster identification in the three-dimensional atom probe. J Microsc-Oxford 216, 234240.CrossRefGoogle ScholarPubMed
Warren, P.J., Cerezo, A. & Smith, G.D.W. (1998). Observation of atomic planes in 3DAP analysis. Ultramicroscopy 73(1–4), 261266.Google Scholar
Waugh, A.R., Boyes, E.D. & Southon, M.J. (1976). Investigations of field evaporation with field desorption microscope. Surf Sci 61, 109142.CrossRefGoogle Scholar
Webber, R.D., Smith, R. & Walls, J.M. (1979). Shape of field-ion emitters. J Phys D-Appl Phys 12(9), 15891595.CrossRefGoogle Scholar