No CrossRef data available.
Published online by Cambridge University Press: 22 January 2016
There are a number of methods to find minimal two-level forms for a given Boolean function, e g. Harvard’s group [1], Veitch [2], Quine [3], [4], Karnaugh [5], Nelson [6], [7] etc,. This paper presents an approach which is suitable for mechanical or automatic computation, as the Harvard method and the Quine method are so. On the other hand, it shares the same property as the Veitch method in the sense that some of essential prime implicants may be found before all prime implicants are computed. It also adopts the procedure to reduce the necessary steps for computation which is shown in Lawler [8]. The method described is applicable to the interval of Boolean functions f, g such that f implies g where for simplification of sum form the variables occurring in g also occur in f and for product form the variables in f also occur in g.