Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-14T20:31:23.464Z Has data issue: false hasContentIssue false

On Mean Distortion for Analytic Functions with Positive Real Part in a Circle

Published online by Cambridge University Press:  22 January 2016

Yûsaku Komatu*
Affiliation:
Tokyo Institute of Technology
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let be the class of analytic functions Ф(z) which are regular and of positive real part in the unit circle | z | <1 and normalized by Ф(0) = 1. Several distortion theorems have been obtained on various functionals in this class. In a previous paper [4] we have dealt with mean distortion which generalizes a classical theorem of Rogosinski [6].

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1967

References

[1] Carathéodory, C.: Über die Winkelderivierten von beschränkťen analytischen Funktionen, Sitzungsber. Preuss. Akad. (1929), 118.Google Scholar
[2] Herglotz, A.: Über Potenzreihen mit positivem, reellem Teil im Einheitskreise, Leipziger Ber., 63 (1911), 501511.Google Scholar
[3] Julia, G.: Extensions nouvelles d’un lemme de Schwarz, Acta Math., 42 (1920), 349355.CrossRefGoogle Scholar
[4] Komatu, Y.: On analytic functions with positive real part in a circle, Kōdai Math. Sem. Rep., 10 (1958), 6483.Google Scholar
[5] Komatu, Y.: On fractional angular derivative, Kōdai Math. Sem. Rep., 13 (1961), 249254.Google Scholar
[6] Rogosinski, W.: Über positive harmonische Entwicklungen und typisch-reelle Potenzreihen, Math. Zeitschr., 35 (1932), 93121.CrossRefGoogle Scholar
[7] Wolff, J.: Sur une généralisation d’un théorème de Schwarz, C. R. Paris, 183 (1926), 500502.Google Scholar