Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T22:07:08.117Z Has data issue: false hasContentIssue false

Determinants of energy density with conventional foods and artificial feeds

Published online by Cambridge University Press:  28 February 2007

Geoffrey Livesey
Affiliation:
AFRC Institute of Food Research, Norwich Laboratory, Colney Lane, Norwich NR4 7UA
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Symposium on ‘Modifying the energy density of human diets’
Copyright
The Nutrition Society

References

Agricultural Research Council (1980). The Nutrient Requirements of Ruminant Livestock. Slough: Common wealth Agricultural Bureaux.Google Scholar
Alison, R. G. & Senti, F. R. (1983). A Perspective on the Application of the Atwater System of Food Energy Assessment. Bethesda, MD: Federation of American Societies for Experimental Biology.Google Scholar
Arieli, A. (1986). Effect of glucose on fermentation heat in sheep rumen fluid in vitro. British Journal of Nutrition 56, 305311.CrossRefGoogle ScholarPubMed
Atwater, W. O. (1910). Principles of nutrition and nutritive value of food. United States Department of Agriculture Farmers' Bulletin no. 142 (Second Review). Washington, DC: US Government Printing Office.Google Scholar
Blaxter, K. L. (1989). Energy Metabolism in Animals and Man. Cambridge: Cambridge University Press.Google Scholar
British Nutrition Foundation (1990). Complex Carbohydrates in Foods. The Report of the British Nutrition Foundation's Task Force. London: Chapman and Hall.Google Scholar
Brook, O. G. (1985). Absorption of lard by infants. Human Nutrition: Applied Nutrition 39A, 221223.Google Scholar
Chacko, A., Begum, A. & Mathan, V. I. (1984). Absorption of nutrient energy in Southern Indian control subjects and patients with tropical spruce. American Journal of Clinical Nutrition 40, 771775.CrossRefGoogle Scholar
Cooley, S. & Livesey, G. (1985). The metabolizable energy value of Polydextrose in a mixed diet fed to rats. British Journal of Nutrition 57, 235243.CrossRefGoogle Scholar
Cummings, J. H. (1983). Fermentation in the human large intestine; evidence and implications for health. Lancet i, 12061208.CrossRefGoogle Scholar
Davies, I. R., Brown, J. C. & Livesey, G. (1991). Energy values and energy balance in rats fed supplements of guar gum or cellulose. British Journal of Nutrition 65, 415435.CrossRefGoogle ScholarPubMed
Department of Health and Social Security (1980). Artificial Feeds for the Young Infant. London: H.M. Stationery Office.Google Scholar
Dutch Nutrition Council (1987). The Energy Value of Sugar Alcohols. Recommendations of the Committee on Polyalcohols. The Hague: Vaedingsraad.Google Scholar
Elia, M. & Livesey, G. (1987). Theory and validity of indirect calorimetry during net lipid synthesis. American Journal of Clinical Nutrition 47, 591607.CrossRefGoogle Scholar
Figdor, S. K., Allingham, R. P., Kita, D. A. & Hobbs, D. A. (1987). Caloric utilization of sorbitol and isomalt in the rat. Journal of Agriculture and Food Chemistry 35, 9961001.CrossRefGoogle Scholar
Figdor, S. K. & Bianchine, J. R. (1983). Caloric utilization of {14C}Polydextrose in man. Journal of Agriculture and Food Chemistry 31, 389393.CrossRefGoogle ScholarPubMed
Flatt, J. P. (1978). The biochemistry of energy expenditure. In Recent Advances in Obesity Research, vol. 2, pp. 211228 [Bray, G. A., editor]. London: Newman Publishing Ltd.Google Scholar
Harley, C. J., Davies, I. R. & Livesey, G. (1988). Caloric value of gums in the rat—data on gum arabic. Food Additives and Contaminants 6, 1320.CrossRefGoogle Scholar
Heymsfield, S. B., Smith, J., Kazriel, S., Barlow, J., Lynn, M. J., Nixon, D. & Lawson, D. H. (1987). Energy malabsorption measurements and nutritional consequences. American Journal of Clinical Nutrition 34, 19541960.CrossRefGoogle Scholar
Hobbs, D. C. (1988). Methodology in the measurement of caloric availability. In Low-calorie Products, pp. 245267 [Birch, G. G. and Lindley, M. G., editors]. London: Elsevier Applied Science.Google Scholar
Hungate, R. E. (1966). The Rumen and its Microbes. New York: Academic Press.Google Scholar
Isaakson, G., Asp, N. -G. & Ihse, I. (1983). Effect of dietary fibre on pancreatic enzymes of ileostomy evacuates and on excretion of fat and nitrogen in the rat. Scandinavian Journal of Gastroenterology 18, 417423.CrossRefGoogle Scholar
Judd, P. A. (1982). The effects of high intakes of barley on gastrointestinal function and apparent digestibilities of dry matter, nitrogen and fat in human volunteers. Journal of Plant Foods 4, 7988.CrossRefGoogle Scholar
Kelsay, J. L., Behall, K. M. & Prather, E. S. (1978). Effect of fibre from fruit and vegetables on metabolizable responses of human subjects. I bowel transit time, number of defecations, faecal weight urinary excretions of energy and nitrogen and apparent digestibility of energy, nitrogen and fat. American Journal of Clinical Nutrition 31, 11491153.CrossRefGoogle Scholar
Keys, A. (1943). Physical performance in relation to diet. Federation Proceedings 2, 164187.Google Scholar
Kleiber, M. (1975). The Fire of Life. New York: Robert E. Kreiger Publishing Co.Google Scholar
Krebs, H. A. (1964). The metabolic fate of amino acids. In Mammalian Protein Metabolism, vol. 1, pp. 125176 [Munro, H. N. and Allison, J. B., editors]. New York: Academic Press.CrossRefGoogle Scholar
Kumar, V., Chandresekaren, R. & Bhasker, R. (1977). Carbohydrate intolerance associated with acute gastroenteritis. Clinical Pediatrics 16, 11231127.CrossRefGoogle ScholarPubMed
Lifshitz, F. (1982). Carbohydrate Intolerance in Infancy. New York: Marcel Dekker.Google Scholar
Livesey, G. (1984). The energy equivalent of ATP and the energy values of food proteins and fats. British Journal of Nutrition 51, 1528.CrossRefGoogle ScholarPubMed
Livesey, G. (1985). Mitochondria1 uncoupling and the isodynamic equivalents of protein, fat and carbohydrate at the level of biochemical energy provision. British Journal of Nutrition 53, 381389.CrossRefGoogle Scholar
Livesey, G. (1987). ATP yields from proteins, fats and carbohydrates and mitochondria1 efficiency in vivo. In Recent Advances in Obesity Research, vol. 5, pp. 131143 [Berry, E. M., Blondheim, S. H., Eliahou, H. E. and Shafrir, E., editors]. London: John Libbey.Google Scholar
Livesey, G. (1988). Energy from food—old values and new perspectives. British Nutrition Foundation Bulletin 13, 928.CrossRefGoogle Scholar
Livesey, G. (1989). Procedures for calculating the digestible and metabolizable energy values of food components making a small contribution to dietary intake. Journal of the Science of Food and Agriculture 48, 475481.CrossRefGoogle Scholar
Livesey, G. (1990 a). The impact of the concentration and dose of Palatinit in foods and diets on its energy value. Human Nutrition: Food Science and Nutrition (In the Press).Google Scholar
Livesey, G. (1990 b). Energy value of unavailable carbohydrates and diets: an inquiry and analysis. American Journal of Clinical Nutrition 51, 617637.CrossRefGoogle ScholarPubMed
Livesey, G. (1990 c). Energy and complex carbohydrates: a workshop report. In Fibre 90-Chemical and Biological Aspects of Dietary Fibre, pp. 282284 [Southgate, D. A. T., Waldron, K. W., Johnson, I. T. J. and Fenwick, G. R. F., editors]. Cambridge: Royal Society of Chemistry.Google Scholar
Livesey, G. (1991). Calculating the energy value of foods: towards a new empirical formula based on diets of varied intake of unavailable complex Carbohydrates. European Journal of Clinical Nutrition 45, 112.Google ScholarPubMed
Livesey, G., Davies, I. R., Brown, J. C., Faulks, R. M. & Southon, S. (1990). Energy balance and energy value of α-amylase (EC 3.2.1.7)-resistant maize and pea (Pisum sativum) starches in the rat. British Journal of Nutrition 63, 467480.CrossRefGoogle Scholar
Livesey, G. & Elia, M. (1985 a). Food energy values of artificial feeds for man. Clinical Nutrition 4, 99–11.CrossRefGoogle ScholarPubMed
Livesey, G. & Elia, M. (1985 b). The potential variations in (A) energy costs of substrate utilization (B) the energy yield and RQ for lipogenesis. In Substrate and Energy Metabolism in Man, A16 [Garrow, J. S., and Halliday, D, editors]. London: John Libbey.Google Scholar
Livesey, G. & Elia, M. (1987). Estimation of energy expenditure, net carbohydrate utilization, and net fat oxidation and synthesis by indirect calorimetry: evaluation of errors with special reference to the detailed composition of fuels. American Journal of Clinical Nutrition 47, 607628.Google Scholar
McCracken, K. J. (1986). Nutritional obesity and body composition. Proceedings of the Nutrition Society 45, 91100.CrossRefGoogle ScholarPubMed
Macy, I. G. (1942). Nutrition and Chemical Growth in Childhood. Springfield, Illinois: Charles C. Thomas.Google Scholar
Macy, I. G., Hummel, F. C. & Shepherd, M. L. (1943). Value of complex carbohydrates in diets of normal children. American Journal of Diseases of Children 65, 195206.Google Scholar
Merrill, A. L. & Watt, B. K. (1955, revised 1973). Energy value of foods, basis and deviation. US Department of Agriculture Handbook 74, Washington, DC: US Government Printing Office.Google Scholar
Metta, V. C. & Mitchell, H. H. (1954). Determination of the metabolizable energy of organic nutrients for the rat. Journal of Nutrition 52, 601611.CrossRefGoogle ScholarPubMed
Miles, C., Hardison, N., Weichrauch, J. L., Prather, E., Berlin, E. & Bodwell, C. E. (1984). Heats of combustion of chemically different lipids. Journal of the American Dietetics Association 84, 659664.CrossRefGoogle ScholarPubMed
Miles, C. W., Kelsay, J. L. & Wong, N. F. (1988). Effect of dietary fibre on metabolizable energy of human diets. Journal of Nutrition 118, 10751081.CrossRefGoogle ScholarPubMed
Ministry of Agriculture, Fisheries & Food (1990). Intakes of intense and bulk sweeteners in the UK 1987–1988. Food Surveillance paper no. 29. Norwich: H.M. Stationery Office.Google Scholar
Nyman, M., Asp, N.-G., Cummings, J. & Wiggins, H. (1986). Fermentation of dietary fibre in the intestinal tract: Comparison between man and rat. British Journal of Nutrition 55, 487496.CrossRefGoogle Scholar
Paul, A. A. & Southgate, D. A. T. (1978). McCance and Widdowson's The Composition of Foods, 4th ed. London: H.M. Stationary Office.Google Scholar
Pèrisse, J. (1983). Heterogeneity in food composition table data. FA0 Food and Nutrition Reviews 9, 1417.Google ScholarPubMed
Reads, N. W. (1990). Pharmaceutical applications of dietary fibre. In Fibre 90-Chemical and Biological Aspects of Dietary Fibre, pp. 340349 [Southgate, D. A. T., Waldron, K. W., Johnson, I. T. and Fenwick, G. R. F., editors]. Cambridge: Royal Society of Chemistry.Google Scholar
Rennhard, H. H. & Bianchine, J. R. (1976). Caloric utilization of {14C}polydextrose in man. Journal of Agriculture and Food Chemistry 24, 287290.CrossRefGoogle Scholar
Rice, E. E., Warner, W. D., More, P. E. & Polling, C. E. (1957). Comparison of the metabolic energy contributions of foods by growth under conditions of energy restriction. Journal of Nutrition 61, 253266.CrossRefGoogle ScholarPubMed
Rubner, M. (1901). Der Energiwert der Kost des Menschen. (The energy value of the human diet). Zeitschrift f¨r Biologie 42, 261305.Google Scholar
Southgate, D. A. T. & Durnin, J. A.V. G. (1970). Caloric conversion factors. An experimental reassessment of the factors used in the calculation of the energy value of human diets. British Journal of Nutrition 24, 517535.CrossRefGoogle Scholar
Schutz, Y. & Dècombez, J. (1987). Metabolisable energy estimates in infants. Journal of Pediatric Gastroenterology and Nutrition 6, 477478.Google ScholarPubMed
Schutz, Y. & Ravussin, E. (1980). Respiratory quotients lower than 0–70 in Ketogenic diets. American Journal of Clinical Nutrition 33, 13171319.CrossRefGoogle ScholarPubMed
Van Es, A. J. H. (1987). Energy utilization of low digestibility carbohydrates. In Low Digestibility Carbohydrates, pp. 121127 [Leegwater, D. E., Feron, V. J. and Hermus, R. J. J., editors]. Wagenheim: Pudoc.Google Scholar
Van Es, A. J. H. (1991). Dietary energy density on using sugar alcohols as replacements for sugars. Proceedings of the Nutrition Society 50, 383391.CrossRefGoogle ScholarPubMed
Van Es, A. J. H., de Groot, L. & Vogt, J. E. (1986). Energy balance of eight volunteers fed on diets supplemented with either lactitol or saccharose. British Journal of Nutrition 56, 545554.CrossRefGoogle ScholarPubMed
Van Weerden, E. J., Huisman, I. J. & Van Leeuwen, P. (1984 a). The Digestion of Palatinit in rhe Intestinal Tract of the Pig. Wageningen: TNO Cereals Flour and Bread Institute.Google Scholar
Van Weerden, E. J., Huisman, I. J. & van Leeuwen, P. (1984 b). Further Studies on the Digestive Process of Palatinit in the Pig. Wageningen: TNO Cereals Flour and Bread Institute.Google Scholar
Webster, A. J. P. (1978). Measurement and prediction of methane production, fermentation heat and metabolism in the tissues of the ruminant gut. In Ruminant Digestion and Feed Evaluation, pp. 8.1–8.10 [Osborne, D., Beever, D. E. and Thomson, D. J., editors]. London: Agricultural Research Council.Google Scholar
Wisker, E., Meltz, A. & Feldheim, W. (1988). Metabolizable energy of diets low or high in dietary fibre from cereals when eaten by humans. Journal of Nutrition 11, 945952.CrossRefGoogle Scholar
Zuleta, A. & Sambucetti, M. E. (1989). Calculation of the metabolizable energy of diets with wheat bran for rats. Nutrition Reports International 39, 11271138.Google Scholar