Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-28T06:58:33.249Z Has data issue: false hasContentIssue false

Effects of drugs on postprandial lipoprotein metabolism

Published online by Cambridge University Press:  28 February 2007

C. J. Packard
Affiliation:
Department of Pathological Biochemistry, Institute of Biochemistry, GlasgowG4 OSF
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Research Article
Copyright
Copyright © The Nutrition Society 1997

References

REFERENCES

Aalto-Setälä, K., Fisher, E. A., Chen, X., Chajek-Shaul, T., Hayek, T., Zechner, R., Walsh, A, Ramakrishnan, R., Ginsberg, H. N. & Breslow, J. L. (1992). Mechanism of hypertriglyceridemia in human apolipoprotein (apo) CIII transgenic mice. Diminished very low density lipoprotein fractional catabolic rate associated with increased apo-CIII and reduced apo E on the particles. Journal of Clinical Investigation 90, 18891900.CrossRefGoogle ScholarPubMed
Atmeh, R. F., Stewart, J. M., Boag, D., Packard, C. J., Lorimer, A. R. & Shepherd, J. (1983). The hypolipidemic action of procubol: A study of its effects on high and low density lipoproteins. Journal of Lipid Research 24, 588595.CrossRefGoogle Scholar
Brinton, E. A., Eisenberg, S. & Breslow, J. L. (1994). Human HDL cholesterol levels are determined by apo AI fractional catabolic rate, which correlates inversely with estimates of HDL particle size. Arteriosclerosis & Thrombosis 14, 707720.CrossRefGoogle ScholarPubMed
Castro Cabezas, M., de Bruin, T. W. A., Jansen, H., Kock, L. A. W., Kortlandt, W. & Erkelens, D. W. (1993). Impaired chylomicron remnant clearance in familial combined hyperlipidemia. Arteriosclerosis & Thrombosis 13, 804814.CrossRefGoogle Scholar
Fuessner, G. (1994). HMG CoA reductase inhibitors. Current Opinion in Lipidology 5, 5968.CrossRefGoogle Scholar
Groot, P. H. E., van Stiphout, W. A. H. J., Krauss, X. H., Jansen, H., van Tol, A., van Ramshorst, E., Chin-On, S., Hofman, A., Cresswell, S. R. & Havekes, L. (1991). Postprandial lipoprotein metabolism in normolipidemic men with and without coronary artery disease. Arteriosclerosis & Thrombosis 11, 653662.CrossRefGoogle ScholarPubMed
Ishibashi, S., Herz, J., Maeda, N., Goldstein, J. L. & Brown, M. S. (1994). The two receptor model of lipoprotein clearance: Tests of the hypothesis in ‘knockout’ mice lacking the low density lipoprotein receptor, apolipoprotein E or both proteins. Proceedings of the National Academy of Sciences USA 91, 44314435.CrossRefGoogle ScholarPubMed
Mamo, J. C. L., Elsegood, C. L., Umeda, Y., Hirano, T. & Redgrave, T. G. (1993). Effect of probucol on plasma clearance and organ uptake of chylomicrons and VLDLs in normal and diabetic rats. Arteriosclerosis & Thrombosis 13, 231239.CrossRefGoogle ScholarPubMed
Packard, C. J. & Shepherd, J. (1982). The hepatobiliary axis and lipoprotein metabolism effects of bile acid sequestrants and ileal bypass surgery. Journal of Lipid Research 23, 10811098.CrossRefGoogle ScholarPubMed
Patsch, J. R., Prasad, S., Gotto, A. M. J. & Patsch, W. (1987). High density lipoprotein2: Relationship of the plasma levels of this lipoprotein species to its composition, to the magnitude of postprandial lipemia and to the activities of lipoprotein lipase and hepatic lipase. Journal of Clinical Investigation 80, 341347.CrossRefGoogle Scholar
Pazzucconi, F., Franceschini, G., Gianfranceschi, G., Brambilla, E. & Sirtori, C. R. (1993). Lipoprotein structure in male subjects during in vivo lipolysis: effect of an anti-lipolytic treatment with acipimox. Journal of Lipid Research 34, 14651472.CrossRefGoogle ScholarPubMed
Schoojans, K., Staels, B. & Auwerx, J. (1996). Role of the peroxisome proliferator-activated receptor (PPAR) in mediating the effects of fibrates and fatty acids on gene expression. Journal of Lipid Research 37, 907925.CrossRefGoogle Scholar
Simo, I. E., Yakichuk, J. & Ooi, T. C. (1993). Effect of gemfibrozil and lovastatin on postprandial lipoprotein clearance in the hypoalphalipoproteinemia and hypertriglyceridemia syndrome. Atherosclerosis 100, 5564.Google ScholarPubMed
Simpson, H. S., Williamson, C. M., Olivecrona, T., Pringle, S., Maclean, J., Lorimer, A. R., Bonnefous, F., Bogaievsky, Y., Packard, C. J. & Shepherd, J. (1990). Postprandial lipemia, fenofibrate and coronary artery disease. Atherosclerosis 85, 193202.CrossRefGoogle ScholarPubMed
Syvänne, M., Vuorinen-Markola, H., Hilden, H. & Taskinen, M.-R. (1993). Gemfibrozil reduces postprandial lipaemia in non-insulin dependent diabetes mellitus. Arteriosclerosis & Thrombosis 13, 286295.CrossRefGoogle ScholarPubMed
Taskinen, M.-R. & Kuusi, T. (1987). Enzymes involved in triglyceride hydrolysis. Baillières Clinical Endocrinology and Metabolism 1, 639666.CrossRefGoogle ScholarPubMed
Weintraub, M. S., Eisenberg, S. & Breslow, J. L. (1987). Different patterns of postprandial lipoprotein metabolism in normal, type IIa, type III and type IV hyperlipoproteinemic individuals. Effects of treatment with cholestyramine and gemfibrozil. Journal of Clinical Investigation 79, 11101119.CrossRefGoogle ScholarPubMed
Weintraub, M. S., Eisenberg, S. & Breslow, J. L. (1989). Lovastatin reduces postprandial lipoprotein levels in hypercholesterolaemic patients with mild hypertriglyceridaemia. European Journal of Clinical Investigation 19, 480485.CrossRefGoogle ScholarPubMed
Zilversmit, D. B. (1979). Atherogenesis: A postprandial phenomenon. Circulation 60, 473485.CrossRefGoogle ScholarPubMed