Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-26T22:56:14.844Z Has data issue: false hasContentIssue false

Energy and substrate requirements of the placenta and fetus

Published online by Cambridge University Press:  28 February 2007

William W Hay Jr
Affiliation:
Division of Perinatal Medicine, University of Colorado School of Medicine, 4200 East Ninth Avenue, Denver, Colorado 80262, USA
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Symposium on ‘Recent research on the placenta’
Copyright
The Nutrition Society

References

Balkovetz, D. F., Leibach, F. H., Mahesh, V. B., Devoe, L. D., Cragoe, E. J. Jr & Ganapathy, V. (1986). Na+-H+-exchanger of human placental brush-border membrane: identification and characterization. American Journal of Physiology 251, C852–C860.CrossRefGoogle ScholarPubMed
Battaglia, F. C. & Meschia, G. (1986). An Introduction to Fetal Physiology. Orlando: Academic Press Inc.Google Scholar
Battaglia, F. C. & Meschia, G. (1988). Fetal nutrition. Annual Review of Nutrition 8, 4361.CrossRefGoogle ScholarPubMed
Baur, R. (1977). Morphometry of the placental exchange area. Advances in Anatomy, Embryology and Cell Biology 53, 565.Google ScholarPubMed
Bell, A. W., Battaglia, F. C. & Meschia, G. (1987). Relation between metabolic rate and body size in the ovine fetus. Journal of Nutrition 117, 11811186.CrossRefGoogle ScholarPubMed
Bell, R. M. & Coleman, R. A. (1980). Enzymes of glycerolipid synthesis in eukaryotes. Annual Review of Biochemistry 49, 459487.CrossRefGoogle ScholarPubMed
Carroll, M. J. & Young, M. (1982). Mixed protein synthetic rate in the tissue of the isolated lobule of the human placenta. Journal of Physiology 332, 5P.Google Scholar
Carroll, M. J. & Young, M. (1983). The relationship between placental protein synthesis and transfer of amino acids. Biochemical Journal 210, 99105.CrossRefGoogle ScholarPubMed
Cetin, I., Marconi, A. M., Bozzetti, P., Sereni, L. P., Corbetta, C. M., Pardi, G. & Battaglia, F. C. (1988). Umbilical amino acid concentrations in appropriate and small for gestational age infants: a biochemical difference present in utero. American Journal of Obstetrics and Gynecology 158, 120126.CrossRefGoogle ScholarPubMed
Cetin, I., Sparks, J. W., Quick, A. N. Jr, Marconi, A. M., Meschia, G., Battaglia, F. C. & Fennessey, P. V. (1991). Glycine turnover and oxidation and hepatic serine synthesis from glycine in fetal lambs. American Journal of Physiology 260, E371–E378.Google ScholarPubMed
Christie, W. W. & Noble, R. C. (1982). Fatty acid biosynthesis in sheep placenta and maternal and fetal adipose tissue. Biology of the Neonate 42, 7986.CrossRefGoogle ScholarPubMed
Coleman, R. A. (1986). Placental metabolism and transport of lipid. Federation Proceedings 45, 25192523.Google ScholarPubMed
Coleman, R. A. & Haynes, E. B. (1984). Microsomal and lysosomal enzymes of triacylglycerol metabolism in rat placenta. Biochemical Journal 217, 391397.CrossRefGoogle ScholarPubMed
Coleman, R. A. & Haynes, E. B. (1987). Synthesis and release of fatty acids by human trophoblast cells in culture. Journal of Lipid Research 28, 13351341.CrossRefGoogle ScholarPubMed
DiGiacomo, J. E., Carter, B. S., Battaglia, F. C. & Hay, W. W. Jr (1990). Distribution of nonoxidized glucose carbon in liver, carcass, and glycogen in the late gestation fetal lamb. Pediatric Research 27, Abstr 240, 42A.Google Scholar
DiGiacomo, J. E. & Hay, W. W. Jr (1989). Regulation of placental glucose transfer and consumption by fetal glucose production. Pediatric Research 25, 429434.CrossRefGoogle ScholarPubMed
Domenech, M., Gruppuso, P. A., Nishino, V. T., Susa, J. B. & Schwartz, R. (1986). Preserved fetal plasma amino acid concentrations in the presence of maternal hypoaminoacidemia. Pediatric Research 20, 10711076.CrossRefGoogle ScholarPubMed
Eaton, B. M. & Yudilevich, D. L. (1981). Uptake and asymmetric efflux of amino acids at maternal and fetal sides of placenta. American Journal of Physiology 241, C106–Cl12.CrossRefGoogle ScholarPubMed
Edwards, E. M., Rattenbury, J. M., Varnam, G. C. E., Dhand, U. P., Jeacock, M. K. & Shepherd, D. A. L. (1977). Enzyme activities in the sheep placenta during the last three months of pregnancy. Biochemica Biophysica Acta 497, 133143.CrossRefGoogle ScholarPubMed
Enders, R. H., Judd, R. M., Donohue, T. M. & Smith, C. H. (1976). Placental amino acid uptake. 111. Transport systems for neutral amino acids. American Journal of Physiology 230, 706710.CrossRefGoogle Scholar
Fowden, A. L. & Hay, W. W. Jr (1988). The effects of pancreatectomy on the rates of glucose utilization, oxidation and production in the sheep fetus. Quarterly Journal of Experimental Physiology 73, 973984.CrossRefGoogle ScholarPubMed
Freese, V. E. (1972). Vascular relations of placental exchange areas in primates and man. In Respiratory Gas Exchange and Blood Flo. In the Placenta. DHEW Publication (NIH) no. 73–361, pp. 3154 [ Longo, L. D. and Bartels, H., editors]. Washington, DC: US Department of Health, Education and Welfare.Google Scholar
Ganapathy, M. E., Leibach, F. H., Mahesh, V. B., Howard, J. C., Devoe, L. D. & Ganapathy, V. (1986). Characterization of tryptophan transport in human placental brush-border membrane vesicles. Biochemical Journal 238, 201208.CrossRefGoogle ScholarPubMed
Gresham, E. L., James, E. J., Raye, J. R., Battaglia, F. C., Makowski, E. L. & Meschia, G. (1972). Production and excretion of urea by the fetal lamb. Pediatrics 372379.CrossRefGoogle ScholarPubMed
Hay, W. W. Jr (1989). Placental control of fetal metabolism. In Fetal Growth, pp. 3452 [ Sharp, F., Fraser, R. B. and Milner, R. D. G., editors]. London: Royal Society of Obstetricians and Gynaecologists.Google Scholar
Hay, W. W. Jr, DiGiacomo, J. E., Meznarich, H. K., Hirst, K. & Zerbe, G. (1989). Effects of physiologic levels of glucose and insulin on glucose oxidation and oxygen metabolism in the fetal lamb. American Journal of Physiology 256, E704–E713.Google Scholar
Hay, W. W. Jr & Meznarich, H. K. (1989). Effect of maternal glucose concentration on uteroplacental glucose consumption and transfer in pregnant sheep. Proceedings of Society for Experimental Biology and Medicine 190, 6369.CrossRefGoogle ScholarPubMed
Hay, W. W. Jr, Meznarich, H. K., DiGiacomo, J. E., Hirst, K. & Zerbe, G. (1988 a). Effects of insulin and glucose concentrations on glucose utilization in fetal sheep. Pediatric Research 23, 381387.CrossRefGoogle ScholarPubMed
Hay, W. W. Jr, Meznarich, H. K. & Fowden, A. (1988 b). Effect of streptozotocin on rates of ovine fetal glucose utilization, oxidation and production in the sheep fetus. Metabolism 38, 3037.CrossRefGoogle Scholar
Hay, W. W. Jr, Molina, R., DiGiacomo, J. E. & Meschia, G. (1990). Model of placental glucose consumption and glucose transfer. American Journal of Physiology 258, R569–R577.Google ScholarPubMed
Hay, W. W. Jr, Sparks, J. W., Wilkening, R. B., Battaglia, F. C. & Meschia, G. (1984). Fetal glucose uptake and utilization as functions of maternal glucose concentration. American Journal of Physiology 246, E237–E242.Google ScholarPubMed
Henderson, G. I., Turner, D., Patwardhan, R. V., Lumeng, L., Hoyumpa, A. M. & Schenker, S. (1981). Inhibition of placental valine uptake after acute and chronic maternal ethanol consumption. Journal of Pharmacology and Experimental Therapeutics 216, 465472.Google ScholarPubMed
Hill, P. M. M. & Young, M. (1973). Net placental transfer of free amino acids against varying concentrations. Physiology 235, 409422.CrossRefGoogle ScholarPubMed
Holzman, I. R., Lemons, J. A., Meschia, G. & Battaglia, F. C. (1977). Ammonia production by the pregnant uterus. Proceedings of Society for Experimental Biology and Medicine 156, 2730.CrossRefGoogle ScholarPubMed
Holzman, I. R., Lemons, J. A., Meschia, G. & Battaglia, F. C. (1979 a). Uterine uptake of amino acids and glutamine-glutamate balance in the pregant ewe. Journal of Developmental Physiology 1, 137149.Google Scholar
Holzman, I. R., Philipps, A. F. & Battaglia, F. C. (1979 b). Glucose metabolism, lactate and ammonia production by the human placenta in vitro. Pediatric Research 13, 117120.CrossRefGoogle ScholarPubMed
Illsley, N. P., Harmonde, J. P., Penfold, P., Bardsley, S. E., Coade, S. B., Stacey, T. E. & Hytten, F. E. (1984). Mechanical and metabolic viability of a placental perfusion system in vitro under oxygenated and anoxic conditions. Placenta 5, 213225.CrossRefGoogle ScholarPubMed
Ingerman, R. L., Bissonette, J. M. & Kock, P. L. (1983). Glucose-sensitive and -insensitive cytochalasin-B binding proteins from microvillous plasma membranes of human placenta. Identification of the D-glucose transporter. Biochemica Biophysica Acta 730, 5763.CrossRefGoogle Scholar
Johnson, L. W. & Smith, C. H. (1980). Monosaccharide transport across microvillous membrane of human placenta. American Journal of Physiology 238, C160–Cl68.CrossRefGoogle ScholarPubMed
Johnson, L. W. & Smith, C. H. (1985). Glucose transport across the basal plasma membrane of human placental syncytiotrophoblast. Biochimica Biophysica Acta 815, 4450.CrossRefGoogle ScholarPubMed
Jones, C. T. & Rolph, T. P, (1985). Metabolism during fetal life: a functional assessment of metabolic development. Physiological Reviews 65, 357430.CrossRefGoogle ScholarPubMed
Kahn, B. B. & Flier, J. S. (1990). Regulation of glucose-transporter gene expression in vitro and in vivo. Diabetes Care 13, 548564.CrossRefGoogle ScholarPubMed
Lemons, J. A. (1979). Fetal-placental nitrogen metabolism. Seminars in Perinatology 3, 177190.Google ScholarPubMed
Lemons, J. A., Adcock, E. W. III, Jones, M. D. Jr, Naughton, M. A., Meschia, G. & Battaglia, F. C. (1976). Umbilical uptake of amino acids in the unstressed fetal lamb. Journal of Clinical Investigation 58, 14281434.CrossRefGoogle ScholarPubMed
Loy, G. L., Quick, A. N. Jr, Teng, C., Hay, W. W. Jr & Fennessey, P. V. (1990). Versatile stable isotope technique for the measurement of amino acids and keto acids. Comparison with radioactive isotope and its use in measuring in vivo disposal rates. Analytical Biochemistry 185, 19.CrossRefGoogle ScholarPubMed
Marconi, A. M., Sparks, J. W., Battaglia, F. C. & Meschia, G. (1989). A comparison of amino acid arteriovenous differences across the liver, hindlimb and placenta in the fetal lamb. American Journal of Physiology 258, 25082512.Google Scholar
Meier, P. R., Peterson, R. B., Bonds, D. R., Meschia, G. & Battaglia, F. C. (1981). Rates of protein synthesis and turnover in fetal life. American Journal of Physiology 240, E320–E324.Google ScholarPubMed
Meschia, G., Battaglia, F. C., Hay, W. W. Jr & Sparks, J. W. (1980). Utilization of substrates by the ovine placenta in vivo. Federation Proceedings 39, 245249.Google ScholarPubMed
Milley, J. R. (1988). Uptake of exogenous substrates during hypoxia in fetal lambs. American Journal of Physiology 254, E572–ES78.Google ScholarPubMed
Molina, R. D., Meschia, G., Battaglia, F. C. & Hay, W. W. Jr (1991). Gestational maturation of placental glucose transfer capacity in sheep. American Journal of Physiology (In the Press).Google ScholarPubMed
Molteni, R. A., Stys, S. J. & Battaglia, F. C. (1978). Relationship of fetal and placental weight in human beings: fetal/placenta1 weight ratios at various gestational ages and birth weight distributions. Journal of Reproductive Medicine 21, 327334.Google Scholar
Owens, J. A., Falconer, J. & Robinson, J. S. (1987). Effect of restriction of placental growth on fetal and utero-placental metabolism. Journal of Developmental Physiology 9, 225238.Google ScholarPubMed
Quant, P. A., Tubbs, P. K. & Brand, M. D. (1990). Glucagon activates mitochondria1 3-hydroxy-3methylglutaryl-CoA synthase in vivo by decreasing the extent of succinylation of the enzyme. European Journal of Biochemistry 187, 169174.CrossRefGoogle Scholar
Rowell, P. P. & Sastry, B. V. R. (1978). The influence of cholinergic blockade on the uptake of alpha-aminoisobutyric acid by isolated human placental villi. Toxicology and Applied Pharmacology 45, 7993.CrossRefGoogle ScholarPubMed
Rowell, P. P. & Sastry, B. V. R. (1981). Human placental cholinergic system: depression of the uptake of alpha-aminoisobutyric acid in isolated human placental villi by choline acetyltransferase inhibitors. Journal of Pharmacology and Experimental Therapeutics 216, 232238.Google ScholarPubMed
Simmons, M. A., Battaglia, F. C. & Meschia, G. (1979). Placental transfer of glucose. Journal of Developmental Physiology 1, 227243.Google ScholarPubMed
Smith, C. H. (1981). Incubation techniques and investigation of placental transport mechanisms in vitro. Placenta, Suppl. 2, 163176.Google Scholar
Smith, C. H., Adcock, E. W. III, Teasdale, F., Meschia, G. & Battaglia, F. C. (1973). Placental amino acid uptake: Tissue preparation, kinetics, and pre-incubation effect. American Journal of Physiology 224, 558564.CrossRefGoogle Scholar
Smith, C. H. & Depper, R. (1974). Placental amino acid uptake. 11. Tissue pre-incubation, fluid distribution and mechanisms of regulation. Pediatric Research 8, 697703.CrossRefGoogle Scholar
Sparks, J. W., Girand, J. & Battaglia, F. C. (1980). An estimate of the caloric requirements of the human fetus. Biology of the Neonate 38, 113119.CrossRefGoogle ScholarPubMed
Stacey, T. E., Weedon, A. P., Haworth, C., Ward, R. H. T. & Boyd, R. D. H. (1978). Fetomaternal transfer of glucose analogues by sheep placenta. American Journal of Physiology 234, E32–E37.Google ScholarPubMed
Szabo, A. J., De Lellis, R. & Grimaldi, R. D. (1973). Triglyceride synthesis by the human placenta. Incorporation of labeled palmitate into placental triglycerides. American Journal of Obstetrics and Gynecology 115, 257262.CrossRefGoogle ScholarPubMed
Thomas, C. R., Locoy, C., St. Hillaire, R. J. & Brunzell, J. D. (1983). Studies on the placental hydrolysis and transfer of lipids to the fetal guinea pig. In Fetal Nutrition, Metabolismand Immunology: Role of the Placenta, pp. 135148 [ Miller, R. K. and Thiede, H. A., editors]. New York: Plenum Press.Google Scholar
VanVeen, L. C., Hay, W. W. Jr, Battaglia, F. C. & Meschia, G. (1984). Fetal CO2 kinetics. Journal of Developmental Physiology 6, 359365.Google Scholar
VanVeen, L. C., Teng, C., Hay, W. W. Jr, Meschia, G. & Battaglia, F. C. (1987). Leucine disposal and oxidation rates in the fetal lamb. Metabolism 36, 4853.CrossRefGoogle Scholar
Vernon, R. G., Clegg, R. A. & Flint, D. J. (1981). Metabolism of sheep adipose tissue during pregnancy and lactation. Adaptation and regulation. Biochemical Journal 200, 307314.CrossRefGoogle ScholarPubMed
Waterlow, J. C., Garlick, P. J. & Millward, D. J. (1978). Protein Turnover in Mammalian Tissues and in the Whole Body, p. 541. Amsterdam: Elsevier/North-Holland Biomedical Press.Google Scholar
Widdas, W. F. (1952). Inability of diffusion to account for placental glucose transfer in the sheep and consideration of the kinetics of a possible carrier transfer. Journal of Physiology 118, 2329.CrossRefGoogle ScholarPubMed
Widdowson, E. M. (1974). Change in body proportion and composition during growth. In Scientific Foundations of Pediatrics, pp. 4455 [Davis, J. A. and Dobbing, J., editors]. Philadelphia: W. B. Saunders co.Google Scholar
Yudilevich, D. L., Eaton, B. M., Short, A. H. & Leichtweiss, H. P. (1979). Glucose carriers at maternal and fetal sides of the trophoblast in guinea pig placenta. American Journal of Physiology 237, C205–C212.CrossRefGoogle ScholarPubMed
Yudilevich, D. L. & Sweiry, J. H. (1985). Transport of amino acids in the placenta. Biochimica Biophysica Acta 822, 169201.CrossRefGoogle ScholarPubMed