Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T14:01:36.391Z Has data issue: false hasContentIssue false

Gastrointestinal satiety in animals other than man

Published online by Cambridge University Press:  28 February 2007

D. V. Rayner
Affiliation:
Rowett Research Institute, Greenburn Road, Bucksburn, Aberdeen AB2 9SB
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Symposium on ‘Satiety’
Copyright
Copyright © The Nutrition Society 1992

References

Baile, C. A. & McLaughlin, C. L. (1970). Feed intake of goats during volatile fatty acid injections into four gastric areas. Journal of Dairy Science 53, 10581063.CrossRefGoogle ScholarPubMed
Campbell, C. S. & Davis, J. D. (1974). Licking rate of rats is reduced by intraduodenal and intraportal glucose infusion. Physiology and Behavior 12, 357365.CrossRefGoogle ScholarPubMed
Davis, J. D. & Campbell, C. S. (1973). Peripheral control of meal size in the rat: effect of sham feeding on meal size and drinking rate. Journal of Comparative and Physiological Psychology 83, 379387.CrossRefGoogle ScholarPubMed
Davison, J. S. & Clarke, G. D. (1988). Mechanical properties and sensitivity to CCK of vagal gastric slowly adapting mechanoreceptors. American Journal of Physiology 255, G55G61.Google Scholar
Dozois, R. R. & Kelly, K. A. (1971). Effect of a gastrin pentapeptide on canine gastric emptying of liquids. American Journal of Physiology 221, 113117.CrossRefGoogle ScholarPubMed
Ebenezer, I. S., de la Riva, C. & Baldwin, B. A. (1990). Effects of the CCK receptor antagonist MK-329 on food intake in pigs. Physiology and Behavior 47, 145148.CrossRefGoogle ScholarPubMed
Garlicki, J., Konturek, P. K., Majka, J., Kwiecien, N. & Konturek, S. J. (1990). Cholecystokinin receptors and vagal nerves in control of food intake in rats. American Journal of Physiology 258, E40E45.Google ScholarPubMed
Grovum, W. L. (1981). Factors affecting the voluntary intake of food by sheep. 3. The effect of intravenous infusions of gastrin, cholecystokinin and secretin on motility of the reticulo-rumen and intake. British Journal of Nutrition 45, 183201.CrossRefGoogle ScholarPubMed
Hewson, G., Leighton, G. E., Hill, R. G. & Hughes, J. (1988). The cholecystokinin receptor antagonist L364, 718 increases food intake in the rat by attenuation of the action of endogenous cholecystokinin. British Journal of Pharmacology 93, 7984.CrossRefGoogle ScholarPubMed
Hostetler, A. M., McHugh, P. R. & Moran, T. H. (1989). Bombesin affects feeding independent of a gastric mechanism or site of action. American Journal of Physiology 257, R1219R1224.Google ScholarPubMed
Houpt, T. R. (1983). The sites of action of cholecystrokinin in decreasing meal size in pigs. Physiology and Behavior 31, 693698.CrossRefGoogle ScholarPubMed
Houpt, T. R., Anika, S. M. & Houpt, K. A. (1979). Preabsorptive intestinal satiety controls of food intake in pigs. American Journal of Physiology 236, R328R337.Google ScholarPubMed
Hovell, F. D. DeB., Rayner, D. V., Clark, G. H., Kyle, D. J. & Miller, S. J. (1989). Contribution of palatability to differences in the intake of ground and pelleted roughages by sheep. Animal Production 48, 630.Google Scholar
Janowitz, H. D. & Grossman, M. I. (1949). Some factors affecting the food intake of normal dogs with esophagostomy and gastric fistula. American Journal of Physiology 159, 143148.CrossRefGoogle ScholarPubMed
Janowitz, H. D., Hanson, M. E. & Grossman, M. I. (1949). Effect of intravenously administered glucose on food intake in the dog. American Journal of Physiology 156, 8791.CrossRefGoogle ScholarPubMed
Kalogeris, T. J., Reidelberger, R. D. & Mendel, V. E. (1983). Effect of nutrient density and composition of liquid meals on gastric emptying in feeding rats. American Journal of Physiology 244, R865R871.Google ScholarPubMed
Koopmans, H. S. (1975). Jejunal signals in hunger satiety. Behavioral Biology 14, 309374.CrossRefGoogle Scholar
Koopmans, H. S. (1983). A stomach hormone that inhibits food intake. Journal of the Autonomic Nervous System 9, 157171.CrossRefGoogle ScholarPubMed
Koopmans, H. S. (1985). Internal signals cause large changes in food intake in one-way crossed intestines rats. Brain Research Bulletin 14, 595603.CrossRefGoogle ScholarPubMed
Kraly, F. S. & Gibbs, J. (1980). Vagotomy fails to block the satiating effect of food in the stomach. Physiology and Behavior 24, 10071010.CrossRefGoogle ScholarPubMed
Leek, B. F. (1986). Sensory receptors in the ruminant alimentary tract. In Control of Digestion and Metabolism in Ruminants. Proceedings of the Sixth International Symposium on Ruminant Physiology, pp. 317 [Milligan, L. P., Grovum, W. L. and Dobson, A., editors]. New Jersey: Prentice Hall.Google Scholar
Le Magnen, J. (1983). Body energy balance and food intake: a neuroendocrine regulatory mechanism. Physiological Revues 63, 314386.CrossRefGoogle ScholarPubMed
Lepkovsky, S., Bortfeld, P., Dimick, M. K., Feldman, S. E., Furata, F., Sharon, I. M. & Park, R. (1974). Role of upper intestines in the regulation of food intake in parabiotic rats with their intestines “crossed” surgically. Israel Journal of Medical Science 7, 639646.Google Scholar
Le Sauter, J., Goldberg, B. & Geary, N. (1988). CCK inhibits real and sham feeding in gastric vagotomized rats. Physiology and Behavior 44, 527534.CrossRefGoogle ScholarPubMed
Lorenz, D. N., Kreielsheimer, G. & Smith, G. P. (1979). Effect of cholecystokinin, gastrin, secretin and GIP on sham feeding in the rat. Physiology and Behavior 23, 10651072.CrossRefGoogle ScholarPubMed
Lotter, E. C., Krinsky, R., McKay, J. M., Treneer, C. M., Porte, D. Jr & Woods, S. C. (1981). Somatostatin decreases food intake in rats and baboons. Journal of Comparative and Physiological Psychology 95, 278287.CrossRefGoogle ScholarPubMed
McHugh, P. R. & Moran, T. H. (1979). Calories and gastric emptying: a regulatory capacity with applications for feeding. American Journal of Physiology 236, R254R260.Google Scholar
McHugh, P. R. & Moran, T. H. (1986). The stomach, cholecystokinin, and satiety. Federation Proceedings 45, 13841390.Google ScholarPubMed
Maggio, C. A. & Koopmans, H. S. (1987). Satiety effects of intragastric meals containing triglycerides with different chain lengths. American Journal of Physiology 252, R1106R1113.Google ScholarPubMed
Mei, N. (1985). Intestinal chemosensitivity. Physiological Revues 65, 211237.CrossRefGoogle ScholarPubMed
Pekas, J. C. (1991). Effect of cholecystokinin immunization, enhanced food intake and growth of swine on lean yield and carcass composition. Journal of Nutrition 121, 563567.CrossRefGoogle ScholarPubMed
Rayner, D. V. & Gregory, P. C. (1985). Gastrointestinal influences on short-term regulation of food intake in pigs. Proceedings of the Nutrition Society 44, 56A.Google Scholar
Rayner, D. V. & Gregory, P. C. (1989). The rôle of the gastrointestinal tract in the control of voluntary food intake. In The Voluntary Intake of Pigs. Occasional Publication of British Society of Animal Production no. 13, PP. 2739 [Forbes, J. M., Varley, M. A. and Lawrence, T. L. J., editors]. Edinburgh: BSAP.Google Scholar
Rayner, D. V. & Miller, S. (1990). Cholecystokinin effects on wet and dry meals in pigs. Proceedings of the Nutrition Society 49, 222A.Google Scholar
Rayner, D. V., Miller, S. & Lopez, S. (1991). MK-329, L-365,260 and the inhibition of food intake, gastric emptying, volume and pressure to duodenal emulsified fat infusion in the pig. Regulatory Peptides 35, 255.CrossRefGoogle Scholar
Reidelberger, R. D., Kalogeris, T. J., Leung, P. M. B. & Mendel, V. E. (1983). Postgastric satiety in the sham-feeding rat. American Journal of Physiology 244, R872R881.Google ScholarPubMed
Reidelberger, R. D., Kalogeris, T. J. & Solomon, T. E. (1989). Plasma CCK levels after food intake and infusion of CCK analogues that inhibit feeding in dogs. American Journal of Physiology 256, R1148R1154.Google ScholarPubMed
Shurlock, T. G. H. & Forbes, J. M. (1981). Factors affecting food intake in the domestic chicken: the effect of infusions of nutritive and non-nutritive substances into the crop and duodenum. British Poultry Science 22, 323331.CrossRefGoogle ScholarPubMed
Silver, A. J., Flood, J. F., Song, A. M. & Morley, J. E. (1989). Evidence for a physiological role for CCK in the regulation of food intake in mice. American Journal of Physiology 256, R646R652.Google ScholarPubMed
Silver, A. J. & Morley, J. E. (1991). Role of CCK in regulation of food intake. Progress in Neurobiology 36, 2334.CrossRefGoogle ScholarPubMed
Smith, G. P., Jerome, C., Cushin, B. J., Eterno, R. & Simansky, K. J. (1981). Abdominal vagotomy blocks the satiety effect of cholecystokinin in the rat. Science 213, 10361037.CrossRefGoogle ScholarPubMed
Stephens, D. B. (1980). The effects of alimentary infusions of glucose, amino acids, or neutral fat on meal size in hungry pigs. Journal of Physiology 299, 453463.CrossRefGoogle ScholarPubMed
Stephens, D. B. & Baldwin, B. A. (1974). The lack of effect of intrajugular or intraportal injections of glucose or amino-acids on food intake in pigs. Physiology and Behavior 12, 923929.CrossRefGoogle ScholarPubMed
Vanderweele, D. A., Novin, D., Rezek, M. & Sanderson, J. D. (1974). Duodenal or hepatic-portal glucose perfusion: Evidence for duodenally-based satiety. Physiology and Behavior 12, 467473.CrossRefGoogle ScholarPubMed
Walls, E. K. & Koopmans, H. S. (1989). Effect of intravenous nutrient infusions on food intake in rats. Physiology and Behavior 45, 12231226.CrossRefGoogle ScholarPubMed
Wirth, J. B. & McHugh, P. R. (1983). Gastric distension and short-term satiety in the rhesus monkey. American Journal of Physiology 245, R174R180.Google ScholarPubMed
Woods, S. C., Stein, L. J., McKay, D. & Porte, D. Jr (1984). Suppression of food intake by intravenous nutrients and insulin in the baboon. American Journal of Physiology 247, R393R401.Google ScholarPubMed
Zarbin, M. A., Wamsley, J. K., Innis, R. B. & Kuhar, M. J. (1981). Cholecystokinin receptors: presence and axonal flow in the rat vagus nerve. Life Science 29, 697705.CrossRefGoogle ScholarPubMed