Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-28T05:08:56.024Z Has data issue: false hasContentIssue false

Glucosinolates in Brassica: Occurrence and significance as cancer-modulating agents

Published online by Cambridge University Press:  11 October 2007

Wim M. F. Jongen
Affiliation:
Department of Food Science, Wageningen Agricultural University, PO Box 8129, 6700EV, Wageningen, The Netherlands
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Symposium on ‘Physiologically-Active Substances in Plant Foods’
Copyright
Copyright © The Nutrition Society 1996

References

Althaus, F. R., Sinclair, J. F. & Meyer, U. A. (1979). Drug-mediated induction of cytochrome(s) P450 and drug metabolism in cultured hepatocytes maintained in chemically defined medium. Journal of Biological Chemistry 25, 21482152.CrossRefGoogle Scholar
Bailey, G. S., Hendricks, J. D., Sheiton, D. W., Nixon, J. E. & Pawlowski, N. E. (1987). Enhancement of carcinogenesis by the natural anticarcinogen indole-3-carbinol. Journal of the National Cancer Institute 78, 931934.Google ScholarPubMed
Boyd, J. N., Babish, J. G. & Stoewsand, G. S. (1982). Modification by beet and cabbage diets of aflatoxin B1-induced rat plasma α-fetoprotein elevation, hepatic tumorigenesis and mutagenicity of urine. Food and Chemical Toxicology 20, 4754.CrossRefGoogle ScholarPubMed
Bradfield, C. A. & Bjeldanes, L. F. (1987). High performance liquid chromatographic analysis of anticarcinogenic indoles In Brassica oleracea. Journal of Agricultural and Food Chemistry 35, 4649.CrossRefGoogle Scholar
Cha, Y. N., Thompson, D. C., Heine, H. S. & Chung, J. H. (1985). Differential effects of indole, indole-3-carbinol and benzofuran on several microsomal and cytosolic enzyme activities in mouse liver. Korean Journal of Pharmacology 21, 111.Google Scholar
de Vos, R. H. & Blijleven, W. G. H. (1988). The effects of processing on glucosinolate in cruciferous vegetables. Zeitschrift für Lebensmittel-Untersuchung und-Forschung 187, 525529.CrossRefGoogle ScholarPubMed
Fenwick, G. R. & Heaney, R. K. (1983). Glucosinolates and their breakdown products in cruciferous crops, foods and feedingstuffs. Food Chemistry 11, 249271.CrossRefGoogle Scholar
Fenwick, G. R., Heaney, R. K. & Mullin, W. J. (1983). Glucosinoiates and their breakdown products in food and food plants. CRC Critical Reviews in Food Science and Nutrition 18, 123201.CrossRefGoogle ScholarPubMed
Giger, U. & Meyer, U. A. (1981). Role of haem in the induction of cytochrome P450 by phenobarbitone. Biochemical Journal 198, 131135.CrossRefGoogle ScholarPubMed
Gmelin, R. & Virtanen, A. I. (1961). Glucobrassicin, the precursor of SCN∼, 3-indolylacetonitrile and ascorbigen in Brassica oleracea species. Annales Academiae Scientiarum Fennicae 107, 323.Google Scholar
Godeschalk, F. E. 1987 Consumptie van voedingsmiddelen in Nederland in 1984 en 1985 (Consumption of Vegetable Products in the Netherlands in 1984 and 1985), Periodieke rapponage 64–84∼85 The Hague, the Netherlands: Landbouw-Economisch Instituut.Google Scholar
Graham, S. (1983). Results of case–control studies of diet and cancer in Buffalo, New York. Cancer Research 43, 24092413.Google ScholarPubMed
Graham, S., Dayal, S., Swanson, M., Mittelman, A. & Valikinson, G. (1978). Diet in the epidemiology of cancer of the colon and rectum. Journal of the National Cancer Institute 61, 709714.Google ScholarPubMed
Graham, S. & Mettlin, C. (1979). Diet and colon cancer. American Journal of Epidemiology 109, 120.CrossRefGoogle ScholarPubMed
Groenen, P. J. & Bussink, E. (1988). Alkylating activity in food products-especially sauerkraut and sour fermented dairy products–after incubation with nitrite under quasi gastric conditions. Food and Chemical Toxicology 26, 215255.CrossRefGoogle ScholarPubMed
Hill, C. B., Williams, P. H., Carlson, D. G. & Tookey, H. L. (1987). Variation in glucosinolates in oriental brassica vegetables. Journal of American Society of Horticultural Science 112, 309313.CrossRefGoogle Scholar
Hirayama, T. (1986). Diet and cancer: feasibility and importance of prospective cohort study. In Diet and Human Carcinogenesis. Proceedings of the Second ECP Symposium, Aarhus, Denmark, pp. 191 Joossens, J. V., Hill, M. J. & Geboers, J., editor]. Amsterdam: Excerptica Medica.Google Scholar
Jongen, W. M. F. (1988). Co-cultivation of cells as a promising tool in cancer research in vitro. PhD Dissertation, Agricultural University Wageningen, The Netherlands.Google Scholar
Jongen, W. M. F. (1993). Toxicological methods to study mechanisms of naturally occurring anticarcinogens. In Food and Cancer Prevention: Chemical and Biological Aspects, pp. 383396 [Waldron, K. W., Johnson, I. T. & Fenwick, G. R., editor]. Cambridge: The Royal Society of Chemistry.Google Scholar
Jongen, W. M. F., Alink, G. M., Harmsen, E. G. M. & Koeman, J. H. (1982). The effect of glutathione conjugation and microsomal oxidation on the mutagenicity of dichloromethane In Salmonella typhimurium. Mutation Research 95, 183187.CrossRefGoogle ScholarPubMed
Jongen, W. M. F., Topp, R. J., Tiedink, H. G. M. & Brink, E. J. (1987). A co-cultivation system as a model for in vitro studies of modulating effects of naturally occurring indoles on genotoxicity of model compounds. Toxicology in vitro 1, 105110.CrossRefGoogle Scholar
Jongen, W. M. F., Topp, R. J., van Bladeren, P. J., Lapre, J., Wienk, K. J. H. & Leenen, R. (1989). Modulating effects of indoles on benzo(a)pyrene-induced sister chromatid exchanges and the balance between drug-metabolizing enzymes. Toxicology in vitro 3, 207213.CrossRefGoogle ScholarPubMed
Loub, W. D., Wattenberg, L. W. & Davis, D. W. (1975). Aryl hydrocarbon hydroxylase induction by naturally occurring indoles in cruciferous plants. Journal of the National Cancer Institute 54, 985988.Google ScholarPubMed
McDanell, R., McLean, A. E. M., Hanley, A. B., Heaney, R. K. & Fenwick, G. R. (1988). Chemical and biological properties of indole glucosinolates (glucobrassicin): A review. Food and Chemical Toxicaiogy 26, 5970.CrossRefGoogle ScholarPubMed
McDanell, R., McLean, A. E. M., Hanley, A. B., Heaney, R. K. & Fenwick, G. R. (1989). The effect of feeding Brassica vegetables and intact glucosinolates on mixed function oxidase activity in livers and intestines of rats. Food and Chemical Toxicology 27, 189197.CrossRefGoogle ScholarPubMed
McMillan, M., Spinks, E. A. & Fenwick, G. R. (1986). Preliminary observations on the effect of dietary Brussels sprouts on thyroid function. Human Toxicology 5, 1519.CrossRefGoogle ScholarPubMed
Moldeus, P. (1987). Comparison of model systems for metabolism. In Drug Metabolism: From Molecules to Man, pp. 437444 [Benford, D., Bridges, J. W. & Gibson, G. G., editor]. London: Taylor & Francis.Google Scholar
National Toxicological Programme 1981 National Toxicological Programme Technical Report on the Carcinogenesis Bioassay of Isoallylthiocyanate, Triangle Park, NC: National Cancer Institute.Google Scholar
Pence, B. C., Buddingh, F. & Yang, S. P. (1986). Multiple dietary factors in the enhancement of dimethylhydrazine Carcinogenesis: main effect of indole-3-carbinol. Journal of the National Cancer Institute 77, 269276.Google ScholarPubMed
Piacek-Llanes, B. G. & Tannenbaum, S. R. (1982). Formation of an activated N-nitroso compound in nitrite treated fava beans (Vicia faba). Carcinogenesis 3, 13791384.CrossRefGoogle ScholarPubMed
Ponten, J. (1987). Normal versus neoplastic tissue behaviour: what differences are essential? In Concepts and Theories in Carcinogenesis, pp. 313 [Maskens, A. P., Ebbesen, P. & Burny, A., editor]. Amsterdam: Excerptica Medica.Google Scholar
Slaga, T. J. (1984). Multistage skin Carcinogenesis: a useful model for the study of the chenopreventicn of cancer. Acta Pharmacologica et Toxicologica 55, Suppl. 107118.CrossRefGoogle Scholar
Slominski, B. A. & Campbell, L. D. (1987). Gas chromatographic determination of indole glucosinolates a re-examination. Journal of the Science of Food and Agriculture 40, 131143.CrossRefGoogle Scholar
Sparnins, V. I., Venegas, P. L. & Wattenberg, L. W. (1982). Glutathione-S-transferase activity: enhancement by compounds inhibiting chemical carcinogenesis and by dietary constituents. Journal of the National Cancer Institute 68, 493495.Google ScholarPubMed
Srisangham, C., Salunke, D. K., Reddy, N. R. & Dull, G. G. (1980). Quality of cabbage. II. Physical, chemical and biochemical modification in processing treatments to improve flavour of blanched cabbage (Brassica oleracea L.). Journal of Food Quality 3, 233244.CrossRefGoogle Scholar
Stoewsand, G. S., Babish, J. B. & Wimberiey, H. C. (1978). Inhibition of hepatic toxiciries from polybrominated biphenyls and aflatoxin B1 in rats fed cauliflower. Journal of Environmental Pathology and Toxicology 2, 399404.Google Scholar
Tiedink, H. G. M., Davies, J. A. R., van Broekhoven, L. W., van der Kamp, H. J. & Jongen, W. M. F. (1988). Formation of mutagenic N-nitroso compounds in vegetable extracts upon nitrite treatment; a comparison with the glucosinolate content. Food and Chemical Toxicology 26, 947954.CrossRefGoogle ScholarPubMed
Tiedink, H. G. M., Davies, J. A. R., Visser, N. A., Jongen, W. M. F. & van Broekhoven, L. W. (1989). The stability of the nitrosated products of indole, indole-3-acetonitrile, indole-3-carbinol and 4-chloroindole. Food and Chemical Toxicology 27, 723730.CrossRefGoogle ScholarPubMed
Tiedink, H. G. M., Hissink, A. M., Lodema, S. M., van Broekhoven, L. W. & Jongen, W. M. F. (1990). Several known indole compounds are not important precursors of direct mutagenic N-nitroso compounds in green cabbage. Mutation Research 232, 199207.CrossRefGoogle Scholar
Tiedink, H. G. M., Malingre, C. E., van Broekhoven, L. W., Jongen, W. M. F., Lewis, J. & Fenwick, G. R. (1991). The role of glucosinolates in the formation of N-nitroso compounds. Journal of Agricultural and Food Chemistry 39, 922926.CrossRefGoogle Scholar
Topp, R. & van Bladeren, P. J. (1986). Oxydative biotransformation in primary cultures of chick embryo hepatocytes: induction of cytochrome P-450 and the metabolism of Benzo(a)pyrene. Archives of Toxicology 59, 150156.CrossRefGoogle Scholar
van Bladeren, P. J. (1993). Modulation of biotransformation enzymes by non-nutritive dietary factors. In Food and Cancer Prevention: Chemical and Biological Aspects, pp. 163175 [Waldron, K. W., Johnson, I. T. & Fenwick, G. R., editor]. Cambridge: The Royal Society of Chemistry.Google Scholar
van der Hoeven, J. C. M., Lagerweij, W. J., van Gastel, A., Huitink, J., de Dreu, R. & van Broekhoven, L. W. (1984). Intercultivar difference with respect to mutagenicity of fava beans (Vicia Faba L.) after incubation with nitrite. Mutation Research 130, 391394.CrossRefGoogle Scholar
van Etten, G. H. (1969). Goitrogens. In Toxic Constituents of Plant Foodstuffs, pp. 103142 [Liener, I. E., editor]. New York: Academic Press.CrossRefGoogle Scholar
van Etten, G. H. & Wolff, I. A. (1973). Natural sulphur compounds. In Toxicants Occurring Naturally in Foods, pp. 210234Washington. DC: Committee on Food Protection, Food and Nutrition Board and National Research Council, National Academy of Sciences.Google Scholar
Wakabayashi, K., Nagao, M., Ho-Chung, T., Yin, M., Karai, I., Ochiai, M., Tahira, T. & Sugimura, T. (1984). Appearance of direct-acting mutagenicity of various foodstuffs produced in Japan and South-East Asia on nitrite treatment. Mutation Research 158, 119124.CrossRefGoogle Scholar
Wakabayashi, K., Nagao, M., Ochiai, M., Tahira, T., Yamaizumi, Z. & Sugimura, T. (1985). A mutagen precursor in Chinese cabbage, indole-3-acetonitrile, which becomes mutagenic on nitrite-treatment. Mutation Research 143, 1721.Google ScholarPubMed
Wakabayashi, K., Nagao, M., Tahira, T., Yamaizumi, Z., Katayama, M., Marumo, S. & Sugimura, T. (1986). 4-Methoxyindcle derivative as nitrosable precursors of mutagens in Chinese cabbage. Mutagenesis 1, 423426.CrossRefGoogle ScholarPubMed
Wakabayashi, K., Ochiai, M., Saito, H., Tsuda, M. & Sugimura, T. (1983). Presence of 1-methyl-1,2,3,4-tetrahydro-8-carboline-3-carboxylic acid, a precursor of a mutagenic nitroso compound, in soy sauce. Proceedings of the National Academy of Sciences, USA 80, 29122916.CrossRefGoogle ScholarPubMed
Wallenberg, L. W. (1983). Inhibilion of neoplasia by minor dietary constituents. Cancer Research 43, 2449s2453s.Google Scholar
Wattenberg, L. W. (1993). Inhibition of carcinogenesis by non-nutrient constituents of the diet. In Food and Cancer Prevention: Chemical and Biological Aspects, pp. 1224 [Waldron, K. W., Johnson, I. T. & Fenwick, G. R., editor]. Cambridge: The Royal Society of Chemistry.Google Scholar
Wattenberg, L. W. & Loub, W. D. (1978). Inhibition of polycyclic aromatic hydrocarbon-induced neoplasia by naturally occurring indoles. Cancer Research 38, 1410s1414s.Google ScholarPubMed
Wattenberg, L. W., Loub, W. D., Lam, L. K. & Speir, J. L. (1976). Dietary constituents altering the response to chemical carcinogens. Federation Proceedings 35, 13271331.Google ScholarPubMed
Wortelboer, H. M., Dekruif, C. A., Vaniersel, A. A. J., Falke, H. E., Noordhoek, J. & Blaauboer, B. J. (1990). The isoenzyme pattern of cytochrome-P450 in rat hepatocyles in primary culture, comparing different enzyme-activities in microsomal incubations and intact monolayers. Biochemical Pharmacology 40, 25252534.CrossRefGoogle ScholarPubMed
Wright, A. S. (1980). The role of metabolism in chemical mutagenesis and chemical carcinogenesis. Mutation Research 75, 215223.CrossRefGoogle ScholarPubMed
Yamaski, H. (1984). Modulation of cell differentiation by tumor promoters. In Mechanisms of Tumor Promotion, vol. 4, 143 [Slaga, T. J., editor]. Boca Raton, Florida: CRC Press Inc..Google Scholar