Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-28T06:40:18.206Z Has data issue: false hasContentIssue false

Liver protein and glutamine metabolism during cachexia

Published online by Cambridge University Press:  28 February 2007

Karel W. E. Hulsewé
Affiliation:
University Hospital Maastricht, Department of Surgery, PO Box 5800, 6202 AZ Maastricht, The Netherlands
Nicolaas E. P. Deutz
Affiliation:
University Hospital Maastricht, Department of Surgery, PO Box 5800, 6202 AZ Maastricht, The Netherlands
Ivo De Blaauw
Affiliation:
University Hospital Maastricht, Department of Surgery, PO Box 5800, 6202 AZ Maastricht, The Netherlands
Rene R. W. J. Van Der Hulst
Affiliation:
University Hospital Maastricht, Department of Surgery, PO Box 5800, 6202 AZ Maastricht, The Netherlands
Maarten M. F. Von Meyenfeldt
Affiliation:
University Hospital Maastricht, Department of Surgery, PO Box 5800, 6202 AZ Maastricht, The Netherlands
Peter B. Soeters
Affiliation:
University Hospital Maastricht, Department of Surgery, PO Box 5800, 6202 AZ Maastricht, The Netherlands
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Symposium on ‘New perspectives in the anorexia-cachexia syndrome’
Copyright
Copyright © The Nutrition Society 1997

References

REFERENCES

Clowes, G. H. A. (1986). Amino acid transfer between muscle and the visceral tissues in man during health and disease. In Problems and Potential of Branched-chain Amino Acids in Physiology and Medicine, pp. 299334 [Odessey, R., editor ]. Amsterdam: Elsevier Science Publishers.Google Scholar
Clowes, G. H. A. (1987). Wound catabolism: the importance of amino acid transfer and protein synthesis to survival after trauma. In The Pathophysiology of Combined Injury and Trauma. Management of Infectious Complications in Mass Casualty Situations, pp. 233255 [Gruber, D., Walker, R. I., MacVittie, T. J. and Conklin, J. J., editors ]. Boston: Academic Press Inc.Google Scholar
Clowes, G. H. A., McDermott, W. V., Williams, L. F., Loda, M., Menzoian, J. O. & Pearl, R. (1984). Amino acid clearance and prognosis in surgical patients with cirrhosis. Surgery 96, 675685.Google Scholar
Clowes, G. H. A., Randall, H. T. & Cha, C.-J. (1980). Amino acid and energy metabolism in septic and traumatized patients. Journal of Parenteral and Enteral Nutrition 4, 195205.CrossRefGoogle ScholarPubMed
de Blaauw, I. (1996). Interorgan protein and glutamine metabolism in the tumor bearing rat. PhD Thesis. Maastricht University.Google Scholar
de Blaauw, I., Deutz, N. E. P., Boers, W. & von Meyenfeldt, M. F. (1997). Hepatic amino acid and protein metabolism in moderate cachectic tumor bearing rats. Journal of Hepatology (In the Press).Google ScholarPubMed
Deutz, N. E. P., Reijven, P. L. M., Athanasas, G. & Soeters, P. B. (1992). Post-operative changes in hepatic, intestinal, splenic and muscle fluxes of amino acids and ammonia in pigs. Clinical Science 83, 607614.CrossRefGoogle ScholarPubMed
Elia, M. (1991). The inter-organ flux of substrates in fed and fasted man, as indicated by arterio-venous balance studies. Nutrition Research Reviews 4, 331.Google Scholar
Feigin, R. D. & Rapaport, M. I. (1966). Influence of a bacterial toxin on whole blood amino acids. Clinical Research 14, 339.Google Scholar
Heindorff, H., Harvald, T., Nielsen, J., Dalsgard, S. & Vilstrup, H. (1988). Cholecystectomy doubles the hepatic clearance of amino-N for two weeks. Clinical Nutrition 7, Suppl., 64.Google Scholar
Heymsfield, S. B. & McManus, C. B. (1985). Tissue components of weight loss in cancer patients. A new method of study and preliminary observations. Cancer 55, 238249.Google ScholarPubMed
Kern, K. A. & Norton, J. A. (1988). Cancer cachexia. Journal of Parenteral and Enteral Nutrition 12, 286298.Google Scholar
Laviano, A., Renvyle, T. & Yang, Z. (1996). From laboratory to bedside: new strategies in the treatment of malnutrition in cancer patients. Nutrition 12, 112122.CrossRefGoogle ScholarPubMed
Low, S. Y., Taylor, M., Hundal, H. S., Pogson, P. I. & Rennie, M. J. (1992). Transport of L-glutamine and L-glutamate across sinusoidal membranes of rat liver. Biochemical Journal 284, 333340.Google Scholar
Lust, G. (1966). Effect of infection on protein and nucleic acid synthesis in mammalian organs and tissues. Federation Proceedings 25, 16881694.Google Scholar
Pearl, R. H., Clowes, G. H. A., Hirsch, E. F., Loda, M., Grindlinger, G. A. & Wolfort, S. (1985). Prognosis and survival as determined by visceral amino acid clearance in severe trauma. Journal of Trauma 25, 777783.Google Scholar
Reeds, P. J., Fjeld, C. R. & Jahoor, F. (1994). Do the differences between the amino acid compositions of the acute-phase and muscle proteins have a bearing on nitrogen loss in traumatic states? Nutrition 124, 906910.Google ScholarPubMed
Rosenblatt, S., Clowes, G. H. A., George, B. C., Hirsch, E. & Lindberg, B. (1983). Exchange of amino acids by muscle and liver in sepsis. Archives of Surgery 118, 167175.CrossRefGoogle ScholarPubMed
van der Hulst, R. R. W. J., von Meyenfeldt, M. F., Deutz, N. E. P. & Soeters, P. B. (1997). Glutamine extraction by the gut and the effect of nutritional depletion Annals of Surgery (In the Press).Google Scholar
Vilstrup, H. (1980). Synthesis of urea after stimulation with amino acids: relation to liver function. Gut 21, 990995.Google Scholar
Vilstrup, H. (1989). On urea synthesis regulation in vivo. Danish Medical Bulletin 36, 415429.Google ScholarPubMed
von Meyenfeldt, M. F., Meijerink, W. J. H. J., Rouflart, M. M. J., Buil-Maassen, M. T. H. J. & Soeters, P. B. (1992). Perioperative nutritional support: a randomised clinical trial. Clinical Nutrition 11, 180186.Google Scholar
Wannemacher, R. W. (1977). Key role of various individual amino acids in host response to infection. American Journal of Clinical Nutrition 30, 12491280.Google Scholar