Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T08:49:36.106Z Has data issue: false hasContentIssue false

Mathematical modelling of nitrogen flow in growing pigs and lactating sows

Published online by Cambridge University Press:  28 February 2007

James E. Pettigrew
Affiliation:
Department of Animal Science, University of Minnesota, St Paul, MN 55108, USA
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Symposium on ‘Regulation of nitrogen retention in farm animals’
Copyright
Copyright © The Nutrition Society 1997

References

REFERENCES

Baldwin, R. L., France, J. & Gill, M. (1987). Metabolism of the lactating cow. I. Animal elements of a mechanistic model. Journal of Dairy Research 54, 77105.CrossRefGoogle ScholarPubMed
Bastianelli, D., Sauvant, D. & Rérat, A. (1996). Mathematical modeling of digestion and nutrient absorption in pigs. Journal of Animal Science 74, 18731887.CrossRefGoogle ScholarPubMed
Batterham, E. S., Andersen, L. M., Baigent, D. R. & White, E. (1990). Utilization of ideal digestible amino acids by growing pigs: effect of dietary lysine concentration on efficiency of lysine retention. British Journal of Nutrition 64, 8194.CrossRefGoogle Scholar
Bikker, P. (1994). Protein and lipid accretion in body components of growing pigs. Effects of body weight and nutrient intake. PhD Thesis, Agricultural University of Wageningen, The Netherlands.Google Scholar
Bikker, P., Verstegen, M. W. A. & Campbell, R. G. (1996). Performance and body composition of finishing gilts (45 to 85 kilograms) as affected by energy intake and nutrition in earlier life: I. Protein and lipid accretion in body components. Journal of Animal Science 74, 817826.CrossRefGoogle Scholar
Black, J. L. (1995). The testing and evaluation of models. In Modelling Growth in the Pig. European Association for Animal Production Publication no. 78, pp. 2331 [Moughan, P. J., Verstegen, M. W. A. and VisserReyneveld, M. I., editors]. Wageningen: Wageningen Pers.Google Scholar
Black, J. L., Campbell, R. G., Williams, I. H., James, K. J. & Davies, G. T. (1986). Simulation of energy and amino acid utilisation in the pig. Research and Development in Agriculture 3, 121145.Google Scholar
Booth, P. J. (1990). Metabolic influences on hypothalamic-pituitary-ovarian function in the pig. Journal of Reproduction and Fertility 40, Suppl., 89100.Google ScholarPubMed
Campbell, R. G. & Taverner, M. R. (1988). Genotype and sex effects on the relationship between intake and protein deposition in growing pigs. Journal of Animal Science 66, 676686.CrossRefGoogle ScholarPubMed
de Greef, K. H. (1992). Prediction of production. Nutrition induced tissue partitioning in growing pigs. PhD Thesis, Agricultural University of Wageningen, The Netherlands.Google Scholar
de Lange, C. F. M. & Schreurs, H. W. E. (1995). Principles of model application. In Modelling Growth in the Pig. European Association for Animal Production Publication no. 78, pp. 187208 [Moughan, P. J., Verstegen, M. W. A. and Visser-Reyneveld, M. I., editors]. Wageningen: Wageningen Pers.Google Scholar
Foxcroft, G. R., Aheme, F. X., Clowes, E. C., Miller, H. & Zak, L. (1995). Sow fertility: The role of suckling inhibition and metabolic status. In Animal science research and development: moving Toward a New Century, pp. 377393 [Ivan, M., editor]. Ottawa: Centre for Food and Animal Research, Agriculture and AgriFood Canada.Google Scholar
Fuller, M. F., McWilliam, R., Wang, T. C. & Giles, L. R. (1989). The optimum dietary amino acid pattern for growing pigs. 2. Requirements for maintenance and for tissue protein accretion. British Journal of Nutrition 62, 255267.CrossRefGoogle ScholarPubMed
Klasing, K. (1994). Interactions between nutrition and immunity. Proceedings, Allen D. Leman Swine Conference, pp. 3539. St paul, MN: University of Minnesota.Google Scholar
Koketsu, Y., Dial, G. D., Pettigrew, J. E., Marsh, W. E. & King, V. L. (1996). Influence of imposed feed intake patterns during lactation on reproductive performance and on circulating levels of glucose, insulin, and luteinizing hormone in primiparous sows. Journal of Animal Science 74, 10361046.CrossRefGoogle ScholarPubMed
Krick, B. J., Boyd, D. R., Roneker, K. R., Beermann, D. H., Bauman, D. E., Ross, D. A. & Meisinger, D. J. (1993). Porcine somatotropin affects the dietary lysine requirement and net lysine utilization for growing pigs. Journal of Nutrition 123, 19131922.CrossRefGoogle ScholarPubMed
Möhn, S., Fuller, M. F., Ball, R. & de Lange, C. F. M. (1996). Measurement of lysine oxidation in growing pigs by continuous infusion of L-1 [14C]-lysine: influence of feeding frequency. Journal of Animal Science 74, Suppl. 1, 175 Abstr.Google Scholar
Moughan, P. J. (1995). Modelling protein metabolism in the pig—critical evaluation of a simple reference model. In Modelling Growth in the Pig. European Association for Animal Production Publication no. 78, pp. 103112 [Moughan, P. J., Verstegen, P. J. and Visser-Reyneveld, M. I., editors]. Wageningen: Wageningen Pers.Google Scholar
Moughan, P. J., Verstegen, M. W. A. & Visser-reyneveld, M. I. (editors) (1995). Modelling Growth in the Pig. European Association for Animal Production Publication no. 78. 103112 [Moughan, P. J., Verstegen, M. W. A. and Visser-Reyneveld, M. I., editors]. Wageningen: Wageningen Pers.Google Scholar
Pettigrew, J. E., Gill, M., France, J. & Close, W. H. (1992 a). A mathematical integration of energy and amino acid metabolism of lactating sows. Journal of Animal Science 70, 37423761.CrossRefGoogle ScholarPubMed
Pettigrew, J. E., Gill, M., France, J. & Close, W. H. (1992 b). Evaluation of a mathematical model of lactating sow metabolism. Journal of Animal Science 70, 37623773.CrossRefGoogle ScholarPubMed
Pettigrew, J. E., McNamara, J. P., Tokach, M. D., King, R. H. & Crooker, B. A. (1993). Metabolic connections between nutrient intake and lactational performance in the sow. Livestock Production Science 35, 137152.CrossRefGoogle Scholar
Pettigrew, J. E. & Tokach, M. D. (1993). Metabolic influences on sow reproduction. Pig News and Information 14, 69N72N.Google Scholar
Schinckel, A. P., Preckel, P. V. & Einstein, M. E. (1996). Prediction of daily protein accretion rates of pigs from estimates of fat-free lean gain between 20 and 120 kilograms live weight. Journal of Animal Science 74, 498503.CrossRefGoogle ScholarPubMed
Standing Committee on Agriculture, Pig Subcommittee (1987). Feeding Standards for Australian Livestock. Pigs. Melbourne, Australia: CSIRO.Google Scholar
Walker, R. J. & Wiseman, B. S. (1994). Growth performance of segregated early weaned (SEW) pigs compared to their conventionally weaned littermates. Journal of Animal Science 72, Suppl. 1, 377 Abstr.Google Scholar
Williams, N. H., Stahly, T. S. & Zimmerman, D. R. (1994). Impact of immune system activation on growth and amino acid needs of pigs from 6 to 114 kg body weight. Journal of Animal Science 72, Suppl. 1, 57 Abstr.Google Scholar