Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-28T04:24:31.139Z Has data issue: false hasContentIssue false

Metabolic and glucostatic control of feeding

Published online by Cambridge University Press:  11 October 2007

Wolfgang Langhans
Affiliation:
Institute for Animal Sciences, Swiss Federal Institute of Technology, Zurich, Switzerland
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
The Glucostatic Theory of Hunger and Satiety: Where Are We Now?
Copyright
Copyright © The Nutrition Society 1996

References

Adair, E. R., Miller, N. E. & Booth, D. A. (1968). Effects of continuous intravenous infusion of nutritive substances on consummatory behavior in the rat. Communications in Behavioral Biology A2, 2537.Google Scholar
Astrup, A., Buemann, B., Christensen, N. J. & Toubro, S. (1994). Failure to increase lipid oxidation in response to increasing dietary fat content in formerly obese women. American Journal of Physiology 266, E592E599.Google Scholar
Bach, A. C. & Babayan, V. K. (1962). Medium-chain triglycerides: an update. American Journal of Clinical Nutrition 36, 950962.CrossRefGoogle Scholar
Baile, C. A., Zinn, W. M. & Mayer, J. (1970). Effects of lactate and other metabolites on food intake of monkeys. American Journal of Physiology 219, 16061613.Google Scholar
Bauché, F., Sabourault, D., Giudicelli, Y., Nordmann, J. & Nordmann, R. (1981). 2-Mercaptoacetate administration depresses the β-oxidation pathway through an inhibition of long-chain acyl-CoA dehy-drogenase activity. Biochemical Journal 196, 803809.CrossRefGoogle Scholar
Bellin, S. I. & Ritter, S. (1981). Disparate effects of infused nutrients on delayed glucoprivic feeding and hypothalamic norepinephrine turnover. Journal of Neuroscience 1, 13471353.Google Scholar
Bellinger, L. L., Trietley, G. J. & Bernardis, L. L. (1976). Failure of portal glucose and adrenaline infusions or liver denervation to affect food intake in dogs. Physiology and Behavior 16, 299304.CrossRefGoogle ScholarPubMed
Berthoud, H.-R., Kressel, M. & Neuhuber, W. L. (1992). An anterograde tracing study of the vagal innervation of rat liver, portal vein and biliary system. Anatomy and Embryology 186, 431442.Google Scholar
Berthoud, H.-R. & Mogenson, G. J. (1977). Ingestive behavior after intracerebral and intracerebroventricular infusions of glucose and 2-deoxy-D-glucose. American Journal of Physiology 233, R127R133.Google ScholarPubMed
Beverly, J. L., Yang, Z.-J. & Meguid, M. M. (1994a). Factors influencing compensatory feeding during parenteral nutrition in rats. American Journal of Physiology 266, R1928R1932.Google Scholar
Beverly, J. L., Yang, Z.-J. & Meguid, M. M. (1994b). Hepatic vagotomy effects on metabolic challenges during parenteral nutrition in rats. American Journal of Physiology 266, R646R649.Google ScholarPubMed
Blundell, J. E., Burley, V. J., Cotton, J. R. & Lawton, C. L. (1993). Dietary fat and the control of energy-intake: evaluating the effects of fat on meal size and postmeal satiety. American Journal of Clinical Nutrition 57, Suppl. S772S778.CrossRefGoogle ScholarPubMed
Booth, D. A. (1972). Postabsorptively induced suppression of appetite and the energostatic control of feeding. Physiology and Behavior 9, 199202.CrossRefGoogle ScholarPubMed
Bremer, J. & Osmundsen, H. (1984). Fatty acid oxidation and its regulation. In Fatty Acid Oxidation and its Regulation, pp. 113154 [Numa, S., editors] Amsterdam: Elsevier.CrossRefGoogle Scholar
Campfield, L. A. & Smith, F. J. (1990). Systemic factors in the control of food intake–Evidence for patterns as signals. In Handbook of Behavioral Neurobiology. Neurobiology of Food and Fluid Intake, vol. 10, 183206 [Stricker, E. M., editors] New York: Plenum Press.Google Scholar
Campfield, L. A., Smith, F. J. & Brandon, P. (1985). On-line continuous measurement of blood glucose and meal pattern in free-feeding rats: the role of glucose in meal initiation. Brain Research Bulletin 14, 606616.Google Scholar
Campfield, L. A., Smith, F. J., Rosenbaum, M. & Hirsch, J. (1995). Transient declines in blood glucose precede increased hunger ratings in humans. Appetite 24, 78.Google Scholar
Dambach, G. & Fredmann, N. (1974). Substrate-induced membrane potential changes in the perfused rat liver. Biochimica et Biophysica Acta 367, 366370.Google Scholar
Davis, J. D., Wirtshafter, D., Asin, K. E. & Brief, D. (1981). Sustained intracerebroventricular infusion of brain fuels reduces body weight and food intake in rats. Science 212, 8182.Google Scholar
Davis, M. A., Williams, P. E. & Cherrington, A. D. (1984). Effect of a mixed meal on hepatic lactate and gluconeogenetic precursor metabolism in dogs. American Journal of Physiology 247, E362E369.Google Scholar
Delprete, E. & Scharrer, E. (1990). Hepatic branch vagotomy attenuates the feeding response to 2-deoxy-D-glucose in rats. Experimental Physiology 75, 259261.CrossRefGoogle ScholarPubMed
Delprete, E. & Scharrer, E. (1992). Effects of 2-deoxy-D-glucose on food intake of rats are affected by diet composition. Physiology and Behavior 51, 951956.CrossRefGoogle ScholarPubMed
Delprete, E. & Scharrer, E. (1994). Circadian effects of hepatic branch vagotomy on the feeding response to 2-deoxy-D-glucose in rats. Journal of the Autonomic Nervous System 46, 2736.Google Scholar
DiGirolamo, M., Newby, D. F. & Lovejoy, J. (1992). Lactate production in adipose tissue: a regulated function with extra-adipose implications. FASEB Journal 6, 24052412.Google Scholar
Even, P., Coulaud, H. & Nicolaidis, S. (1988). Integrated metabolic control of food intake after 2-deoxy-D-glucose and nicotinic acid injection. American Journal of Physiology 255, R82R89.Google ScholarPubMed
Even, P. & Nicolaidis, S. (1985). Spontaneous and 2DG induced metabolic changes and feeding: The ischymetric hypothesis. Brain Research Bulletin 15, 429435.CrossRefGoogle ScholarPubMed
Even, P. & Nicolaidis, S. (1986). Short-term control of feeding, limitation of the glucostatic theory. Brain Research Bulletin 17, 621626.Google Scholar
Felig, P., Wahren, J. & Hendler, R. (1975). Influence of oral glucose ingestion on splanchnic glucose and gluconeogenetic substrate metabolism in man. Diabetes 24, 468475.Google Scholar
Ferranini, E., Bjorkman, O., Reichard, G. A. Jr, Pilo, A., Olsson, M., Wahren, J. & DeFronzo, R. A. (1985). The disposal of an oral glucose load in healthy subjects. Diabetes 34, 580588.Google Scholar
Fitz, J. G. & Scharschmidt, B. F. (1987). Regulation of transmembrane electrical potential gradient in rat hepatocytes in situ. American Journal of Physiology 252, G56G64.Google Scholar
Flatt, J. P. (1995). Use and storage of carbohydrate and fat. American Journal of Clinical Nutrition 61, Suppl. S952S959.Google Scholar
Flatt, J. P., Ravussin, E., Acheson, K. J. & Jéquier, E. (1985). Effects of dietary fat on postprandial substrate oxidation and on carbohydrate and fat balances. Journal of Clinical Investigation 76, 10191024.Google Scholar
Foltin, R. W., Fischman, M. W., Moran, T. H., Rolls, B. & Kelly, T. H. (1990). Caloric compensation for lunches varying in fat and carbohydrate content by humans in a residential laboratory. American Journal of Clinical Nutrition 52, 969980.Google Scholar
Foltin, R. W., Rolls, B. J., Moran, T. H., Kelly, T. H., McNelis, A. L. & Fischman, M. W. (1992). Caloric, but not macronutrient, compensation by humans for required-eating occasions with meals and snack varying in fat and carbohydrate. American Journal of Clinical Nutrition 55, 331342.Google Scholar
Foster, D. W. (1984). From glycogen to ketones – and back. Diabetes 33, 11881199.Google Scholar
Friedman, M. I., Ketchum, M., Ulrich, P., Broslin, P. A. S. & DellaCorte, C. (1994). Evidence for innervation of the hepatic parenchyma in the rat. Society for Neuroscience Abstracts 20, 1226.Google Scholar
Friedman, M. I., Ramirez, I., Bowden, C. R. & Tordoff, M. G. (1990). Fuel partitioning and food intake: Role for mitochondrial fatty acid transport. American Journal of Physiology 258, R216R221.Google ScholarPubMed
Friedman, M. I. & Stricker, M. E. (1976). The physiological psychology of hunger, a physiological perspective. Psychological Reviews 83, 409431.Google Scholar
Friedman, M. I. & Tordoff, M. G. (1986). Fatty acid oxidation and glucose utilization interact to control food intake in rats. American Journal of Physiology 251, R840R845.Google Scholar
Geary, N., Scharrer, E., Freudlsperger, R. & Raab, W. (1979). Adaptation to high fat diet and carbohydrate-induced satiety in the rat. American Journal of Physiology 237, R139R146.Google ScholarPubMed
Geiselman, P. J. (1984). Food intake following intraduodenal and hepatic-portal infusion of hexoses in the rabbit: evidence that hexose administration can increase subsequent chow intake. Nutrition and Behavior 2, 7787.Google Scholar
Greene, D. A. & Winegrad, A. I. (1979). In vitro studies of the substrates for energy production and the effects of insulin on glucose utilization in the neural components of peripheral nerve. Diabetes 28, 878887.CrossRefGoogle ScholarPubMed
Grill, H. J., Friedman, M. I., Norgren, R., Scalera, G. & Seeley, R. (1995). Parabrachial nucleus lesions impair feeding response elicited by 2,5-anhydro-D-mannitol. American Journal of Physiology 268, R676R682.Google Scholar
Hamilton, C. L. (1969). Problems of refeeding after starvation in the rat. Annals of the New York Academy of Sciences 157, 10041017.CrossRefGoogle ScholarPubMed
Hanson, R. L., Ho, R. S., Wisenberg, J. J., Simpson, R., Younathan, E. S. & Blair, J. B. (1984). Inhibition of gluconeogenesis and glycogenolysis by 2,5-anhydro-D-mannitol. Journal of Biological Chemistry 259, 218223.Google Scholar
Hermann, G. E. & Rogers, R. C. (1985). Convergence of vagal and gustatory afferent input within the parabrachial nucleus of the rat. Journal of the Autonomic Nervous System 13, 117.CrossRefGoogle ScholarPubMed
Himmi, T., Boyer, A. & Orsini, J. C. (1988). Changes in lateral hypothalamic neuronal activity accompanying hyper-and hypoglycemias. Physiology and Behavior 44, 347354.Google Scholar
Jéquier, E. (1994). Carbohydrates as a source of energy. American Journal of Nutrition 59, Suppl. S682S685.Google Scholar
Kanarek, R. B. & Hirsch, J. B. (1977). Dietary-induced overeating in experimental animals. Federation Proceedings 36, 154158.Google Scholar
Kanarek, R. B., Marks-Kaufman, R., Ruthazer, R. & Gualtieri, L. (1983). Increased carbohydrate consumption by rats as a function of 2-deoxy-D-glucose administration. Pharmacology Biochemistry and Behavior 18, 4750.Google Scholar
Katzeff, H. L., Danforth, E. Jr (1989). Decreased thermic effect of a mixed meal during overnutrition in human obesity. American Journal of Clinical Nutrition 50, 915921.Google Scholar
Kennedy, G. C. (1953). Role of depot fat in the hypothalamic control of food intake in the rat. Proceedings of the Royal Society (London) 140B, 578592.Google Scholar
Kimura, R. E., LaPine, T. R., Manford Gooch, W. III (1988). Portal venous and aortic glucose and lactate changes in a chronically catheterized rat. Pediatric Research 23, 235240.Google Scholar
Langhans, W. (1991). Hepatic and intestinal handling of metabolites during feeding in rats. Physiology and Behavior 49, 12031209.CrossRefGoogle ScholarPubMed
Langhans, W., Damaske, U. & Scharrer, E. (1985a). Different metabolites might reduce food intake by the mitrochondrial generation of reducing equivalents. Appetite 6, 143152.CrossRefGoogle Scholar
Langhans, W., Egli, G. & Scharrer, E. (1985b). Selective hepatic vagotomy eliminates the hypophagic effect of different metabolites. Journal of Autonomic Nervous System 13, 255262.Google Scholar
Langhans, W., Geary, N. & Scharrer, E. (1982). Liver glycogen content decreases during meals in rats. American Journal of Physiology 243, R450R453.Google Scholar
Langhans, W., Pantel, K., Müller-Schell, W., Eggenberger, E. & Scharrer, E. (1984). Hepatic handling of pancreatic glucagon and glucose during meals in rats. American Journal of Physiology 247, R827R832.Google Scholar
Langhans, W. & Scharrer, E. (1987a). Evidence for a role of the sodium pump of hepatocytes in the control of food intake. Journal of the Autonomic Nervous System 20, 199205.CrossRefGoogle ScholarPubMed
Langhans, W. & Scharrer, E. (1987b). Role of fatty acid oxidation in control of meal pattern. Behavioral and Neural Biology 47, 716.CrossRefGoogle ScholarPubMed
Langhans, W. & Scharrer, E. (1987c). Evidence for a vagally-mediated satiety signal derived from hepatic fatty acid oxidation. Journal of the Autonomic Nervous System 18, 1318.Google Scholar
Langhans, W. & Scharrer, E. (1992). Metabolic control of eating. In Metabolic Control of Eating, Energy Expenditure and the Bioenergetics of Obesity. World Review of Nutrition and Dietetics, vol. 70, 167 [Simopoulos, A. P., editors] Basel: Karger.Google Scholar
Larue-Achagiotis, C. & LeMagnen, J. (1981). Metabolic correlates of the effects of 2-deoxy-glucose on meal size and post-meal satiety in rats. Physiology and Behavior 26, 193196.CrossRefGoogle Scholar
Leathwood, P. & Pollet, P. (1988). Effects of slow release carbohydrates in the form of bean flakes on the evolution of hunger and satiety in man. Appetite 10, 111.CrossRefGoogle ScholarPubMed
Leibowitz, S. F. (1988). Hypothalamic paraventricular nucleus: interaction between α2-noradrenergic system and circulating hormones and nutrients in relation to energy balance. Neuroscience and Biobehavioral Reviews 12, 101104.CrossRefGoogle Scholar
Leibowitz, S. F. (1992). Neurochemical-neuroendocrine systems in the brain controlling macronutrient intake and metabolism. Trends in Neurosciences 15, 491497.Google Scholar
LeMagnen, J. (1983). Body energy balance and food intake: A neuroendocrine regulatory mechanism. Physiological Reviews 63, 314386.Google Scholar
Louis-Sylvestre, J. & LeMagnen, J. (1980). A fall in blood glucose level precedes meal onset in free-feeding rats. Neuroscience and Biobehavioral Reviews 4, 1315.Google Scholar
Lovejoy, J., Mellen, B. & DiGirolamo, M. (1990). Lactate generation following glucose ingestion: Relation to obesity, carbohydrate tolerance and insulin sensitivity. International Journal of Obesity 14, 843855.Google Scholar
MacDonald, I. A., Rothwell, N. J. & Stock, M. J. (1976). Lipolytic and lipogenic activities of adipose tissue during spontaneous fat depletion and repletion. Proceedings of the Nutrition Society 35, 129A-130A.Google Scholar
MacLagan, N. F. (1937). The role of appetite in the control of body weight. Journal of Physiology 90, 385394.Google Scholar
Mayer, J. (1953). Glucostatic mechanism of regulation of food intake. New England Journal of Medicine 249, 1316.Google Scholar
Meyer, A. H. & Scharrer, E. (1991). Hyperpolarization of the cell membrane of mouse hepatocytes by metabolizable and non-metabolizable monosaccharides. Physiology and Behavior 50, 351355.Google Scholar
Miselis, R. R. & Epstein, A. N. (1975). Feeding induced by intracerebroventricular 2-deoxy-D-glucose in the rat. American Journal of Physiology 229, 14381447.Google Scholar
Müller, K., Scharrer, E. & Zucker, H. (1967). Aufhebung eines durch die Mahlzeitenfolge gesetzten 12-Std-Rhythmus der Blugucosekonzentration duech Änderung der Nahrungszusammensetzung. Natur – wissenschaften 54, 201202.Google Scholar
Murname, J. M. & Ritter, S. (1985). Intraventricular aliloxan impairs feeding to both central and systemic glucoprivation. Physiology and Behavior 34, 609613.Google Scholar
Newgard, C. B., Moore, S. V., Foster, D. W. & McGarry, J. D. (1983). Efficient hepatic glycogen synthesis in refeeding rats requires continued carbon flow through the gluconeogenetic pathway. Journal of Biological Chemistry 259, 69486963.Google Scholar
Nicolaidis, S. (1981). Lateral hypothalamic control of metabolic factors related to feeding. Diabetologia 20, 426441.Google Scholar
Nicolaidis, S. & Rowland, N. (1976). Metering of intravenous versus oral nutrients and regulation of energy balance. American Journal of Physiology 231, 661668.Google Scholar
Niewoehner, C. B., Gilboe, D. P. & Nuttal, F. Q. (1984). Metabolic effects of oral glucose in the liver of fasted rats. American Journal of Physiology 246, E89E94.Google Scholar
Niijima, A. (1969). Afferent impulse discharges from glucoreceptors in the liver of the guinea pig. Annals of the New York Academy of Sciences 157, 690700.Google Scholar
Niijima, A. (1982). Glucose-sensitive afferent nerve fibres in the hepatic branch of the vagus nerve in the guinea-pig. Journal of Physiology 332, 315323.Google Scholar
Niijima, A. (1983). Glucose-sensitive afferent nerve fibers in the liver and their role in food intake and blood glucose regulation. Journal of the Autonomic Nervous System 9, 207220.Google Scholar
Novin, D., O'Farrel, L., Acevedo-Cruz, A. & Geiselman, P. J. (1991). The metabolic bases for 'paradoxical' and normal feeding. Brain Research Bulletin 27, 435438.CrossRefGoogle ScholarPubMed
Novin, D., Robinson, K., Culbreth, L. A. & Tordoff, M. G. (1985). Is there a role for the liver in control of food intake. American Journal of Clinical Nutrition 42, 10501062.Google Scholar
Novin, D., Sanderson, J. O. & VanderWeele, D. A. (1974). The effect of isotonic glucose on eating as a function of feeding condition and infusion site. Physiology and Behavior 13, 37.Google Scholar
Novin, D., VanderWeele, D. A. & Rezek, M. (1973). Infusion of 2-deoxy-D-glucose into the hepatic portal system causes eating: Evidence for peripheral glucoreceptors. Science 181, 858860.Google Scholar
Oomura, Y. (1976). Significance of glucose, insulin, and free fatty acid on the hypothalamic feeding and satiety neurons. In Hunger: Basic Mechanisms and Clinical Implications, pp. 145157 [Novin, D., Wyrwicka, W. & Bray, G., editors] New York: Raven Press.Google Scholar
Oomura, Y. & Yoshimatsu, H. (1984). Neural network of glucose monitoring system. Journal of the Autonomic Nervous System 10, 359372.Google Scholar
Pi-Sunyer, F. X. (1990). Effect of the composition of the diet on energy intake. Nutrition Reviews 48, 94105.CrossRefGoogle ScholarPubMed
Pi-Sunyer, F. X., Hashim, S. A. & Van Itallie, T. B. (1969). Insulin and ketone responses to ingestion of medium and long-chain triglycerides in man. Diabetes 18, 96100.Google Scholar
Plomp, P. J. A. M., van Roermund, C. W. T., Groen, A. K., Meijer, A. J. & Tager, J. M. (1985). Mechanism of the stimulation of respiration by fatty acids in rat liver. FEBS Letters 193, 243246.CrossRefGoogle ScholarPubMed
Powley, T. L., Berthoud, H.-R. (1986). Participation of the vagus and other autonomic nerves in control of food intake. In Feeding Behavior, Neural and Humoral Control, pp. 67102 [Ritter, R. C., Ritter, S. & Barnes, C. D., editors] Orlando: Academic Press.Google Scholar
Racotta, R. & Russek, M. (1977). Food and water intake of rats after intraperitoneal and subcutaneous administration of glucose, glycerol and sodium lactate. Physiology and Behavior 18, 267273.Google Scholar
Radziuk, J., McDonald, T. J., Rubenstein, D. & Dupre, J. (1978). Initial splanchnic extraction of ingested glucose in normal man. Metabolism 27, 657669.Google Scholar
Rawson, N. E., Blum, H., Osbakken, M. D. & Friedman, M. I. (1994a). Hepatic phosphate trapping, decreased ATP, and increased feeding after 2,5-anhydro-D-mannitol. American Journal of Physiology 266, R112R117.Google Scholar
Rawson, N. E. & Friedman, M. I. (1994). Phosphate loading prevents the decrease in ATP and increase in food intake produced by 2,5-anhydro-D-mannitol. American Journal of Physiology 266, R1792R1796.Google Scholar
Rawson, N. E., Ulrich, P. M. & Friedman, M. I. (1994b). L-Ethionine, an amino acid analogue, stimulates eating in rats. American Journal of Physiology 267, R612R615.Google ScholarPubMed
Ritter, R. C., Roelke, M. & Neville, M. (1978). Glucoprivic feeding behavior in absence of other signs of glucoprivation. American Journal of Physiology 255, E617E621.Google Scholar
Ritter, R. C. & Slusser, P. G. (1980). Feeding and hyperglycemia induced by 5-thioglucose. American Journal of Physiology 238, E141E144.Google Scholar
Ritter, R. C., Slusser, P. G. & Stone, S. (1981). Glucoreceptors controlling feeding and blood glucose: Location in the hindbrain. Science 213, 451453.CrossRefGoogle ScholarPubMed
Ritter, S. & Dinh, T. T. (1994). 2-Mercaptoacetate and 2-deoxy-D-glucose induce Fos-like immunoreactivity in rat brain. Brain Research 641, 111120.Google Scholar
Ritter, S. & Taylor, J. S. (1989). Capsaicin abolishes lipoprivic but not glucoprivic feeding in rats. American Journal of Physiology 256, R1232R1239.Google Scholar
Ritter, S. & Taylor, J. S. (1990). Vagal sensory neurons are required for lipoprivic but not glucoprivic feeding in rats. American Journal of Physiology 258, R1395R1401.Google Scholar
Ritter, S., Taylor, J. S. & Stone, S. (1988). Capsaicin-sensitive neurons mediate feeding induced by decreased fatty acid utilization but not by glucoprivation. Society for Neuroscience Abstracts 14, 532.Google Scholar
Rogers, R. C., Kajrilas, P. J. & Hermann, G. E. (1984). Projection of the hepatic branch of the splanchnic nerve to the brainstem of the rat. Journal of the Autonomic Nervous System 11, 223225.CrossRefGoogle Scholar
Rolls, B. J., Kimharris, S., Fischman, M. W., Foltin, R. W., Moran, T. H. & Stoner, S. A. (1994). Satiety after preloads with different amounts of fat and carbohydrate: implications for obesity. American Journal of Clinical Nutrition 60, 476487.Google Scholar
Rossi, R., Geronimi, M., Gloor, P., Seebacher, C. & Scharrer, E. (1995). Hyperpolarization of the cell membrane of mouse hepatocytes by fatty acid oxidation. Physiology and Behavior 57, 509514.Google ScholarPubMed
Rumpler, W. V., Seale, J. L., Miles, C. W. & Bodwell, C. E. (1991). Energy-intake restriction and diet-composition effects on energy expenditure in men. American Journal of Clinical Nutrition 53, 430436.Google Scholar
Russek, M. (1963). An hypothesis on the participation of hepatic glucoreceptors in the control of food intake. Nature 197, 7980.CrossRefGoogle Scholar
Russek, V. I. (1970). Demonstration of the influence of an hepatic glucose-sensitive mechanism on food intake. Physiology and Behavior 5, 12071209.Google Scholar
Russek, M. (1981). Current status of the hepatostatic theory of food intake control. Appetite 2, 137143.Google Scholar
Russek, M. & Grinstein, S. (1974). Coding of metabolic information by hepatic glucoreceptors. In Neurohumoral Coding of Brain Function, pp. 8197 [Myers, R. D., Drucker-Colin, R. R., editors] New York: Plenum Publishing Corporation.CrossRefGoogle Scholar
Russel, P. J. D. & Mogenson, G. J. (1975). Drinking and feeding induced by jugular and portal infusions of 2-deoxy-D-glucose. American Journal of Physiology 229, 10141018.Google Scholar
Scharrer, E., DelPrete, E. & Giger, R. (1993). Hepatic branch vagotomy enhances glucoprivic feeding in food-deprived old rats. Physiology and Behavior 54, 259264.Google Scholar
Scharrer, E. & Langhans, W. (1986). Control of food intake by fatty acid oxidation. American Journal of Physiology 250, R1003R1006.Google Scholar
Scharrer, E. & Langhans, W. (1990). Mechanisms for the effect of body fat on food intake. In Control of Body Fat Content, pp. 6386 [Forbes, J. M. & Hervey, G. R., editors] London: Smith, Gordon and Company Ltd..Google Scholar
Scharrer, E., Thomas, D. W. & Mayer, J. (1974). Absence of effect of intraaortal glucose infusion upon spontaneous meals of rats. Pflügers Archiv 351, 315322.Google Scholar
Schmitt, M. (1973). Influences of hepatic portal receptors on hypothalamic feeding and satiety centers. American Journal of Physiology 225, 10891095.Google Scholar
Seifter, S. & Englard, S. (1988). Energy metabolism. In The Liver: Biology and Pathobiology, pp. 279315 [Arias, I. M., Jakoby, W. B., Popper, H., Schachter, D. & Shafritz, D. A., editors] New York: Raven Press.Google Scholar
Senn, M., Gross-Lüem, S. & Langhans, W. (1995). Milchaufnahmeverhalten von Kälbern und metabolische Veränderungen als Antwort auf eine Milchmahlzeit (Milk drinking behaviour in calves and metabolic changes in response to a milk meal). Proceedings of the Society of Nutrition Physiology 4, 64.Google Scholar
Shimizu, N., Oomura, Y., Novin, D., Grijalva, C. V. & Cooper, P. H. (1983). Functional correlations between lateral hypothalamic glucose-sensitive neurons and hepatic portal glucose-sensitive units in the rat. Brain Research 265, 4954.CrossRefGoogle Scholar
Shoemaker, W. C., Yanof, H. M., Turk, L. N. III & Wilson, T. H. (1963). Glucose and fructose absorption in the unanesthetized dog. Gastroenterology 44, 654663.Google Scholar
Smith, G. P. & Epstein, A. N. (1969). Increased feeding in response to decreased glucose utilization in rat and monkey. American Journal of Physiology 217, 10831087.Google Scholar
Stevens, H. C., Covey, T. R., Dills, W. L. Jr (1985). Inhibition of gluconeogenesis by 2,5-anhydro-D-mannitol in isolated rat hepatocytes. Biochimica et Biophysica Acta 845, 502506.Google Scholar
Strubbe, J. H. & Steffens, A. B. (1977). Blood glucose levels in portal and peripheral circulation and their relation to food intake in the rat. Physiology and Behavior 19, 303307.Google Scholar
Stubbs, R. J. (1996). Dietary macronutrients and glucostatic control of feeding. Proceedings of the Nutrition Society 55, 467483.Google Scholar
Surina, D. M., Langhans, W., Pauli, R. & Wenk, C. (1993). Meal composition affects postprandial fatty acid oxidation. American Journal of Physiology 264, R1065R1070.Google Scholar
Surina-Baumgartner, D., Arnold, M., Moses, A. & Langhans, W. (1996). Metabolic effects of a fat and carbohydrate-rich meal in the rat. Physiology and Behavior (In the Press).Google Scholar
Thompson, D. A. & Campbell, R. G. (1977). Hunger in humans induced by 2-deoxy-D-glucose: glucoprivic control of taste preference and food intake. Science 198, 10651068.Google Scholar
Tordoff, M. G. & Friedman, M. I. (1986). Hepatic portal glucose infusions decrease food intake and increase food preference. American Journal of Physiology 251, R192R196.Google Scholar
Tordoff, M. G. & Friedman, M. I. (1988). Hepatic control of feeding: effect of glucose, fructose and mannitol infusion. American Journal of Physiology 254, R969R976.Google Scholar
Tordoff, M. G., Hopfenbeck, J. & Novin, D. (1982). Hepatic vagotomy (partial hepatic denervation) does not alter ingestive responses to metabolic challenges. Physiology and Behavior 28, 417424.Google Scholar
Tordoff, M. G., Rafka, R., DiNovi, M. J. & Friedman, M. I. (1988). 2,5-Anhydro-D-mannitol: a fructose analogue that increases food intake in rats. American Journal of Physiology 254, R150R153.Google Scholar
Tordoff, M. G., Rawson, N. & Friedman, M. I. (1991). 2,5-Anhydro-D-mannitol acts in liver to initiate feeding. American Journal of Physiology 261, R283R288.Google Scholar
Tordoff, M. G., Tluczek, J. P. & Friedman, M. I. (1989). Effect of hepatic portal glucose concentration on food intake and metabolism. American Journal of Physiology 257, R1474R1480.Google Scholar
Torsdottir, I., Alpsten, M., Andersson, H., Schweizer, T. F., Tölli, J. & Würsch, P. (1989). Gastric emptying and glycemic response after ingestion of mashed bean or potato flakes in composite meals. American Journal of Clinical Nutrition 50, 14151419.Google Scholar
Tremblay, A., Plourde, G., Despres, J.-P. & Bouchard, C. (1989). Impact of dietary fat content and fat oxidation on energy intake in humans. American Journal of Clinical Nutrition 49, 799805.Google Scholar
Van Es, A. J. H., Vogt, J. E., Niessen, C., Veth, J., Rodenburg, L., Teeuwse, V., Dhuyvetter, J., Deurenberg, P., Hautvast, J. G. A. J. & Van der Beek, E. (1984). Human energy metabolism below, near and above energy equilibrium. British Journal of Nutrition 52, 429442.CrossRefGoogle ScholarPubMed
Van Itallie, T. B. & Kissileff, H. R. (1983). The physiological control of energy intake: an econometric perspective. American Journal of Clinical Nutrition 38, 978988.Google Scholar
Verboeket-van de Venne, W. P. H. G., Westerterp, K. R. & ten Hoor, F. (1994). Substrate utilization in man: effects of dietary fat and carbohydrate. Metabolism 43, 152156.Google Scholar
Walls, E. K. & Koopmans, H. S. (1989). Effect of intravenous nutrient infusions on food intake in rats. Physiology and Behavior 45, 12231226.CrossRefGoogle ScholarPubMed
Walls, E. K., Willing, A. E. & Koopmans, H. S. (1991). Intravenous nutrient-induced satiety depends on feeding-related gut signals. American Journal of Physiology 261, R313R322.Google Scholar
Woods, S. C., Stein, L. J., McKay, L. D., Porte, D. Jr (1984). Suppression of food intake by intravenous nutrients and insulin in the baboon. American Journal of Physiology 247, R393R401.Google Scholar
Yang, Z. J., Ratto, C., Gleason, J. R., Bellantone, R., Crucitti, F. & Meguid, M. M. (1992). Influence of anterior subdiaphragmatic vagotomy and TPN on rat feeding behavior. Physiology and Behavior 51, 919926.CrossRefGoogle ScholarPubMed
Yin, T. H., Tsai, W. H., Barone, F. C. & Wayner, M. J. (1979). Effects of continuous intramesenteric infusion of glucose and amino acids on food intake of rats. Physiology and Behavior 22, 12071210.Google Scholar