Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T08:19:46.608Z Has data issue: false hasContentIssue false

Report of Macronutrient Metabolism Group Workshop

Published online by Cambridge University Press:  28 February 2007

Eileen R. Gibney
Affiliation:
School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland
Fiona E. Leahy
Affiliation:
School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Workshop on 'Measurement of energy expenditure'
Copyright
Copyright © The Nutrition Society 1996

References

Acheson, K. J., Campbell, I. T., Edholm, O. G., Miller, D. S. & Stock, M. J. (1980). The measurement of daily energy expenditure – an evaluation of some techniques. American Journal of Clinical Nutrition 33, 11551164.CrossRefGoogle ScholarPubMed
Allied Dunbar National Fitness Survey (1994). Allied Dunbar National Fitness Survey. Technical Report 1994. London: Activity and Health Research.Google Scholar
Askanasi, J., Silverberg, P. A., Foster, R. J., Hyman, A. I., Milic-emili, J. & Kinney, J. (1980). Effects of respiratory apparatus on breathing pattern. Journal of Applied Physiology 48, 577580.CrossRefGoogle Scholar
Avons, P., Garthwait, P., Davies, H. L., Murgatroyd, P. R. & James, W. P. T. (1989). Approaches to estimating physical activity in the community: calorimetric validation of actometers and heart rate monitoring. European Journal of Clinical Nutrition 42, 185196.Google Scholar
Backe, J. A. H., Burema, J. & Fritjers, J. E. R. (1982). A short questionnaire for the measurement of habitual physical activity in epidemiological studies. American Journal of Clinical Nutrition 36, 936942.Google Scholar
Ceesay, S. M., Prentice, A. M., Day, K. C., Murgatroyd, P. R., Goldberg, G. R., Scott, W. & Spurn, G. B. (1989). The use of heart rate monitoring in the estimation of energy expenditure: a validation study using indirect whole-body calorimetry. British Journal of Nutrition 61, 175186.CrossRefGoogle ScholarPubMed
Christensen, C. C., Frey, H. M. M., Foensteilen, E., Aadland, E. & Refsum, H. E. (1983). A critical evaluation of energy expenditure estimates based on individual O2 consumption/heart rate curves and average daily heart rate. American Journal of Clinical Nutrition 37, 468472.Google Scholar
Clark, H. D. & Hoffer, L. J. (1991). Reappraisal of the resting metabolic rate of normal young men. American Journal of Clinical Nutrition 53, 2126.CrossRefGoogle ScholarPubMed
Consolazio, C. F., Johnson, R. E. & Pecora, L. J. (1963). Physiological Measurements of Metabolic Functions in Man. New York: McGraw-Hill.Google Scholar
Coward, W. A. (1988). The doubly-labelled wate 2H2 18O method: principles and practice. Proceedings of the Nutrition Society 47, 209218.CrossRefGoogle Scholar
Coward, W., Roberts, S. B. & Cole, T. J. (1988). Theoretical and practical considerations in the doubly-labelled water (2H2 18O) method for the measurement of carbon dioxide production rate in man. European Journal of Clinical Nutrition 42, 207212.Google Scholar
Cox, B. D. (1987). The Health and Lifestyle Survey. London: Health Promotion Trust.Google Scholar
Dubois, D. & Dubois, E. F. (1916). A formula to estimate the appropriate surface area if height and weight be known. Archives of Internal Medicine 17, 855862.Google Scholar
Elia, M. (1991). Energy equivalents of CO2 and their importance in assessing energy expenditure when using tracer tchniques. American Journal of Physiology 260, E75E88.Google Scholar
Elia, M., Jones, M. G., Jennings, G., Poppitt, S. D., Fuller, N. J., Murgatroyd, P. R. & Jebb, S. A. (1995). Estimating energy expenditure from specific activity of urine urea during lengthy subcutaneous NaH14CO3infusion. American Journal of Physiology 269, E172E182.Google Scholar
Elia, M & Livesey, G. (1988). Theory and validity of indirect calorimetry during net lipid synthesis. American Journal of Clinical Nutrition 47, 591607.Google Scholar
Elia, M. & Livesey, G. (1992). Energy expenditure and fuel selection in biological systems. The theory and practice of calculations based on indirect calorimetry and tracer methods. In Metabolic Control of Eating, Energy Expenditure and the Bioenergetics of Obesity. World Review of Nutrition and Dietetics, Vol. 70, pp. 68131 [Simpolous, A. P., editor]. Basel: S. Karger AG.Google Scholar
Ferrannini, E. (1988). The theoretical basis of indirect calorimetry: a review. Metabolism 37, 287301.CrossRefGoogle Scholar
Food and Agriculture Organization/World Health Organization/United Nations University (1985). Report of a Joint Expert Consultation: Energy and Protein Requirements. Technical Report Series no. 724. Geneva: WHO.Google Scholar
Haldane, J. S. (1935). Methods of Air Analysis. London: Griffith.Google Scholar
Harper, I. T., Rising, R., Bogardus, C. & Ravussin, E. (1991). Energy expenditure by doubly-labelled water: validation in lean and obese subjects. American Journal of Physiology 261, E402E409.Google Scholar
Harris, J. A. & Benedict, F. G. (1919). A Biometric Study of Basal Metabolism in Man. Carnegie Institute of Washington Publication no. 279. Washington, DC: Carnegie Institute of Washington.Google Scholar
Henry, C. K. & Rees, D. G. (1988). Basal metabolic rate and race. In Comparative Nutrition, pp. 149161 [Blaxter, K. and Macdonald, I., editors]. Paris: John Libbey.Google Scholar
Henry, C. K. & Rees, D. G. (1991). New predictive equations for the estimations of BMR in tropical peoples. European Journal of Clinical Nutrition 45, 177185.Google Scholar
International Dietary Energy Consultancy Group (1990). International Dietary Energy Consultancy Croup. The Doubly-Labelled Water Method for Measuring Energy Expenditure: Technical Recommendations for Use in Humans. Cambridge: IDECG/IAEA, Vienna.Google Scholar
Kleiber, M. (1961). The Fire of Life. New York: Wiley.Google Scholar
Livingstone, M. B. E., Coward, W. A., Prentice, A. M., Davies, P. S. W., Strain, J. J., Mckenna, P. G., Mahoney, C. A., White, J. A., Stewart, C. M. & Kerr, M. J. (1992). Daily energy expenditure in free-living children: comparison of heart-rate monitoring with the doubly labeled water (2H2 18O) method. American Journal of Clinical Nutrition 56, 343352.Google Scholar
Livingstone, M. B. E., Prentice, A. M., Coward, W. A., Ceesay, S. M., Strain, J. J., Mckenna, P. G., Nevin, G. B., Barker, M. E. & Hickey, R. J. (1990). Simultaneous measurement of free-living energy expenditure by the doubly-labeled water (2H2 18O) method and heart-rate monitoring. American Journal of Clinical Nutrition 52, 59–45.Google Scholar
Lovelady, C. A., Meredith, C. N., Mccrory, M. A., Nornmsen, L. A., Joseph, L. J. & Dewey, K. G. (1993). Energy expenditure in lactating women: a comparison of doubly labeled water and heart-rate-monitoring methods. American Journal of Clinical Nutrition 57, 512518.Google Scholar
Mclean, J. A. & Tobin, G. (1987). Animal and Human Calorimetry. Cambridge: Cambridge University Press.Google Scholar
Murgatroyd, P. R., Shetty, P. S. & Prentice, A. M. (1993). Techniques for the measurement of human energy expenditure: a practical guide. International Journal of Obesity 17, 549568.Google Scholar
Norgan, N. G. (1996). Measurement and interpretation issues in laboratory and field studies of energy expenditure. American Journal of Human Biology (In the Press).3.0.CO;2-3>CrossRefGoogle ScholarPubMed
Piers, L. S. & Shetty, P. S. (1993). Basal metabolic rates of Indian women. European Journal of Clinical Nutrition 47, 586591.Google ScholarPubMed
Ravussin, E., Lilloja, S., Anderson, T. E:, Christin, L. & Bogardus, C. (1986). Determinants of 24-hour energy expenditure in man. Journal of Clinical Investigation 78, 15681578.Google Scholar
Regan, C. J., Snowdon, S. L. & Campbell, I. T. (1990). Laboratory evaluation and use of the Engstrom Metabolic Computer in the clinical setting. Critical Care Medicine 18, 871877.CrossRefGoogle ScholarPubMed
Robinson, T., Brooke-wavell, K., Jones, P., Potter, J. & Hardman, A. (1995). Can activity monitors be used to assess compliance with walking programmes in the elderly? International Journal of Rehabilitation Research 18, 263265.CrossRefGoogle ScholarPubMed
Schoeller, D. A. (1988). Measurement of energy expenditure in free-living humans by using doubly labeled water. Journal of Nutrition 118, 12781289.Google Scholar
Schofield, W. N., Schofield, C. & James, W. P. T. (1985). Basal metabolic rate. Human Nutrition: Clinical Nutrition 39C, Suppl. 1, 196.Google Scholar
Simonson, D. C. & Defronzo, R. A. (1990). Indirect calorimetry; methodological and interpretative problems. American Journal of Physiology 258, E399E412.Google Scholar
Singh, J., Prentice, A. M., Diaz, E., Coward, W. A., Ashford, J., Sawyer, M. & Whitehead, R. G. (1989). Energy expenditure of Gambian women during peak agricultural activity measured by the doubly-labelled water method. British Journal of Nutrition 62, 315329.Google Scholar
Spurr, G. B., Prentice, A. M., Murgatroyd, P. R., Goldberg, G. R., Reina, J. C. & Christman, N. T. (1988). Energy expenditure from minute-by-minute heart rate recording comparison with indirect calorimetry. American Journal of Clinical Nutrition 48, 552559.CrossRefGoogle ScholarPubMed
Takala, J., Keinanen, O., Vaisanen, P. & Aarno, K. (1989). Measurement of gas exchange in intensive care: laboratory and clinical validation of a new device. Critical Care Medicine 17, 10411047.Google Scholar
Vohra, S. B., Keegan, M. A., Campbell, I. T. & Mcguiness, K. (1995). Practical limitations of the Deltatrac Indirect Calorimeter. Clinical Nutrition 14, 155161.Google Scholar
Weir, J. B. D. V. (1949). New methods for calculating metabolic rate with special reference to protein metabolism. Journal of Physiology 109, 19.Google Scholar
Weissman, C., Sardar, A. & Kemper, M. (1994). An in vitro evaluation of an instrument designed to measure oxygen consumption and carbon dioxide production during mechanical ventilation. Critical Care Medicine 22, 19952000.Google Scholar