Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-28T06:53:37.245Z Has data issue: false hasContentIssue false

Stable isotopes in adipose tissue fatty acids as indicators of diet in arctic foxes (Alopex lagopus)

Published online by Cambridge University Press:  28 February 2007

Caroline M. Pond
Affiliation:
Department of Biology, The Open University, Milton Keynes MK7 6AA
Iain Gilmour
Affiliation:
Planetary Sciences Research Institute, The Open University, Milton Keynes MK7 6AA
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Symposium on ‘Nutrition of wild and captive wild animals’ Plenary Lecture
Copyright
Copyright © The Nutrition Society 1997

References

REFERENCES

Abrajano, T. A., Murphy, D. E., Fang, J., Comet, P. & Brooks, J. M. (1994). 13C/12C ratios in individual fatty acids of marine mytilids with and without bacterial symbionts. Organic Geochemistry 21, 611617.CrossRefGoogle Scholar
Ambrose, S. H. & DeNiro, M. J. (1986). The isotopic ecology of East African mammals. Oecologia 69, 395406.CrossRefGoogle ScholarPubMed
Angerbjörn, A., Hersteinsson, P., Lidén, K. & Nelson, E. (1994). Dietary variation in arctic foxes (Alopex lagopus) - an analysis of stable carbon isotopes. Oecologia 99, 226232.Google Scholar
Beylot, M. (1994). The use of stable isotopes and mass spectrometry in studying lipid metabolism. Proceedings of the Nutrition Society 53, 355362.Google Scholar
Binnert, C., Laville, M., Pachiaudi, C., Rigalleau, V. & Beylot, M. (1995). Use of gas chromatography isotope ratio mass spectrometry to study triglyceride metabolism in humans. Lipids 30, 869873.Google Scholar
Brenner, R. R. (1989). Factors influencing fatty acid′ chain elongation and desaturation. In The Role of Fats in Human Nutrition, pp. 4679 [Vergroesen, A. J. and Crawford, M., editors]. London: Academic Press.Google Scholar
Chisholm, B. S., Nelson, D. E. & Schwartz, H. P. (1982). Stable carbon isotope ratios as a measure of marine versus terrestrial protein in ancient diets. Science 216, 11311132.Google Scholar
Colby, R. H., Mattacks, C. A. & Pond, C. M. (1993). The gross anatomy, cellular structure and fatty acid composition of adipose tissue in captive polar bears (Ursus maritimus). Zoo Biology 12, 267275.Google Scholar
Connor, W. E., Lin, D. S. & Colvis, C. (1996). Differential mobilization of fatty acids from adipose tissue. Journal of Lipid Research 37, 290298.Google Scholar
Cormie, A. B. & Schwarcz, H. P. (1994). Stable isotopes of nitrogen and carbon of North American white tailed deer and implications for paleodietary and other food web studies. Palaeogeography Palaeoclimatology Palaeoecology 107, 227241.Google Scholar
DeNiro, M. J. & Epstein, S. (1977). Mechanism for carbon isotope fractionation associated with lipid synthesis. Science 197, 261263.Google Scholar
DeNiro, M. J. & Epstein, S. (1978). Influence of diet on the distribution of carbon isotopes in animals. Geochimica Cosmochimica Acta 42, 495506.Google Scholar
Des Marais, D. J., Mitchell, J. M., Meinschein, W. G. & Hayes, J. M. (1980). The carbon isotopic biogeochemistry of the individual hydrocarbons in bat guano and the ecology of the insectivorous bats in the region of Carlsbad, New Mexico. Geochimica Cosmochimica Acta 44, 20752086.Google Scholar
Engel, M. H. & Macko, S. A. (1984). Separation of amino acid enantiomers by high-performance liquid chromatography for stable nitrogen and carbon isotopic analysis. Analytical Chemistry 56, 25982600.CrossRefGoogle Scholar
Fay, F. H. & Stephenson, R. O. (1989). Annual, seasonal, and habitat-related variation in feeding habits of the arctic fox (Alopex lagopus) on St Lawrence Island, Bering Sea. Canadian Journal of Zoology 67, 19861994.Google Scholar
Frafjord, K. (1993). Food habits of arctic foxes (Alopex lagopus) on the western coast of Svalbard. Arctic 46, 4954.Google Scholar
Frafjord, K. & Prestrud, P. (1992). Home range and movements of arctic foxes (Alopex lagopus) in Svalbard. Polar Biology 12, 519526.Google Scholar
Fry, B. & Sherr, E. B. (1984). δ13C measurements as indicators of carbon flow in marine and freshwater ecosystems. Contributions to Marine Science 27, 1347.Google Scholar
Garrott, R. A., Eberhardt, L. E. & Hanson, W. C. (1983). Summer food habits of juvenile arctic foxes in northern Alaska. Journal of Wildlife Management 47, 540545.Google Scholar
Gilmour, I., Johnston, M. A., Pillinger, C. T., Pond, C. M., Mattacks, C. A. & Prestrud, P. (1995). The carbon isotopic composition of individual fatty acids as indicators of dietary history in arctic foxes on Svalbard. Philosophical Transactions of the Royal Society B 349, 135142.Google Scholar
Gilmour, I. & Pillinger, C. T. (1994). Isotopic compositions of individual polycyclic aromatic hydrocarbons from the Murchison meteorite. Monthly Notices of the Royal Astronomical Society 269, 235240.Google Scholar
Gilmour, I., Swart, P. K. & Pillinger, C. T. (1984). The carbon isotopic composition of individual petroleum lipids. Organic Geochemistry 6, 665670.CrossRefGoogle Scholar
Groscolas, R. (1990). Metabolic adaptations to fasting in emperor and king penguins. In Penguin Biology, pp. 269296 [Davis, L. S. and Darby, J. T., editors]. San Diego and New York: Academic Press.Google Scholar
Guo, Z. K., Luke, A. H., Lee, W. P. & Schoeller, D. (1993). Compound-specific carbon-isotope ratio determination of enriched cholesterol. Analytical Chemistry 65, 19541959.CrossRefGoogle ScholarPubMed
Gurr, M. I. & Harwood, J. L. (1991). Lipid Biochemistry: An Introduction, 4th ed. London: Chapman & Hall.Google Scholar
Harlow, J. J. & Varnell, T. R. (1980). Winter changes in fatty acid composition of badger and coyote tissues. Comparative Biochemistry and Physiology 67A, 211214.Google Scholar
Harrigan, P., Zieman, J. C. & Macko, S. A. (1989). The base of nutritional support for the gray snapper (Lutjanus griseus): an evaluation based on combined stomach content and stable isotope analysis. Bulletin of Marine Science 44, 6577.Google Scholar
Hayes, J. M., Freeman, K. H., Popp, B. N. & Hoham, C. H. (1990). Compound-specific isotopic analyses - a novel tool for reconstraction of ancient biogeochemical processes. Organic Geochemistry 16, 11151128.Google Scholar
Hersteinsson, P. & Macdonald, D. W. (1996). Diet of arctic foxes (Alopex lagopus) in Iceland. Journal of Zoology, London 240, 457474.Google Scholar
Hilditch, T. P. & Williams, P. N. (1964). Chemical Constitution of Natural Fats, 4th ed. New York: John Wiley.Google Scholar
Johnston, M. A., Yellowlees, D. & Gilmour, I. (1995). Carbon isotopic analysis of the free fatty acids in a tridacnid algal symbiosis - interpretation and implications for the symbiotic association. Proceedings of the Royal Society of London B 260, 293297.Google Scholar
McConnaughey, T. & McRoy, C. P. (1979). Food-web structure and the fractionation of carbon isotopes in the Bering sea. Marine Biology 53, 257262.Google Scholar
Mattacks, C. A. & Pond, C. M. (1997). The effects of feeding suet-enriched chow on site-specific differences in the composition of triacylglycerol-fatty acids in adipose tissue and its interactions in vitro with lymphoid cells. British Journal of Nutrition 77, 621643.Google Scholar
Matthews, D. E. & Hayes, J. M. (1978). Isotope ratio monitoring gas chromatography mass spectrometry. Analytical Chemistry 50, 1465.Google Scholar
Metges, C. C., Petzke, K. J. & Hennig, U. (1996). Gas chromatography combustion isotope ratio mass spectrometric comparison of N-acetyl and N-pivaloyl amino acid esters to measure 15N isotopic abundances in physiological samples - a pilot study on amino acid synthesis in the upper gastrointestinal tract of mini pigs. Journal of Mass Spectrometry 31, 367376.Google Scholar
Moers, M. E. C., Jones, D. M., Eakin, P. A., Fallick, A. E., Griffiths, H. & Larter, S. R. (1993). Carbohydrate diagenesis in hypersaline environments: application of GC-IRMS to the stable isotope analysis of derivatized saccharides from surficial and buried sediments. Organic Geochemistry 20, 927934.Google Scholar
Murphy, D. E. & Abrajano, T. A. (1994). Carbon isotope compositions of fatty acids in mussels from Newfoundland estuaries. Estuarine Coastal and Shelf Science 39, 261272.CrossRefGoogle Scholar
Nielsen, S. M. (1991). Fishing arctic foxes, Alopex lagopus, on a rocky island in west Greenland. Polar Research 9, 211213.CrossRefGoogle Scholar
O'Leary, M. H. (1981). Carbon isotope fractionation in plants. Phytochemistry 20, 553567.Google Scholar
Ostrom, P. H. & Fry, B. (1993). Sources and cycling of organic matter within modem and prehistoric food webs. In Organic Geochemistry, Principles and Applications, pp. 785798 [Engel, M. H. and Macko, S. A., editors]. New York: Plenum Press.Google Scholar
Ostrom, P. H., Macko, S. A., Engel, M. H., Silfer, J. A. & Russell, D. (1990). Geochemical characterization of high molecular weight material isolated from late Cretaceous fossils. Organic Geochemistry 16, 11391144.Google Scholar
Pond, C. M., Mattacks, C. A., Colby, R. H. & Ramsay, M. A. (1992). The anatomy, chemical composition and metabolism of adipose tissue in wild polar bears (Ursus maririmus). Canadian Journal of Zoology 70, 326341.Google Scholar
Pond, C. M., Mattacks, C. A., Colby, R. H. & Tyler, N. J. (1993). The anatomy, chemical composition and maximum glycolytic capacity of adipose tissue in wild Svalbard reindeer (Rangifer tarandus platyrhynchus) in winter. Journal of Zoology, London 229, 1740.CrossRefGoogle Scholar
Pond, C. M., Mattacks, C. A., Gilmour, I., Johnston, M. A., Pillinger, C. T. & Prestrud, P. (1995 b). Chemical and carbon isotopic composition of fatty acids in adipose tissue as indicators of dietary history in wild arctic foxes (Alopex lagopus) on Svalbard. Journal of Zoology, London 236, 611623.Google Scholar
Pond, C. M., Mattacks, C. A. & Prestrud, P. (1995 a). Variability in the distribution and composition of adipose tissue in arctic foxes (Alopex lagopus) on Svalbard. Journal of Zoology, London 236, 593610.CrossRefGoogle Scholar
Pond, C. M., Mattacks, C. A. & Ramsay, M. A. (1994). The anatomy and chemical composition of adipose tissue in wild wolverines (Gulo gulo) in northern Canada. Journal of Zoology, London 232, 603616.Google Scholar
Prestrud, P. (1992 a). Food habits and observations of the hunting behaviour of arctic foxes, Alopex lagopus, in Svalbard. Canadian Field Naturalist 106, 225236.Google Scholar
Prestrud, P. (1992 b). Denning and home-range characteristics of breeding arctic foxes in Svalbard. Canadian Journal of Zoology 70, 12761283.CrossRefGoogle Scholar
Prestrud, P. & Nilssen, K. (1992). Fat deposition and seasonal variation in body composition of arctic foxes in Svalbard. Journal of Wildlife Management 56, 221233.Google Scholar
Quinlan, S. E. & Lehnhausen, W. A. (1982). Arctic fox, Alopex lagopus, predation on nesting common eiders, Somateria mollissma, at Icy Cape, Alaska. Canadian Field Naturalist 96, 462466.Google Scholar
Raclot, T. & Groscolas, R. (1993). Differential mobilization of white adipose tissue fatty acids according to chain length, unsaturation, and positional isomerism. Journal of Lipid Research 34, 15151526.CrossRefGoogle ScholarPubMed
Raclot, T., Mioskowski, E., Bach, A. C. & Groscolas, R. (1995). Selectivity of fatty acid mobilization: a general metabolic feature of adipose tissue. American Journal of Physiology 269, R1060R1067.Google Scholar
Ramsay, M. A. & Hobson, K. A. (1991). Polar hears make little use of terrestrial food webs: evidence from stable-carbon isotope analysis. Oecologia 86, 598600.Google Scholar
Reidinger, R. F., Labows, J. N., Fellows, D. & Mason, J. R. (1985). Fatty acid composition of adipose tissue as an indicator of diet: a preliminary assessment. Journal of Wildlife Management 49, 170177.Google Scholar
Rönning, O. I. (1979). Svalbard Flora. Polar Handbook 1. Oslo: Norsk Polarinstitutt.Google Scholar
Rouvinen, K. & Kiiskinen, T. (1989). Influence of dietary fat source on the body fat composition of mink (Mustela vison) and blue fox (Alopex lagopus). Acta Agriculturae Scandinavica 39, 279288.Google Scholar
Rouvinen, K., Mäkelä, J., Kiiskinen, T. & Nummela, S. (1993). Accumulation of dietary fish fatty acids in the body fat reserves of some carnivorous fur-bearing animals. Agricultural Science in Finland 1, 483490.Google Scholar
Schell, D. M. & Ziemann, P. J. (1989). Natural carbon isotope tracers in arctic aquatic food webs. In Stable Isotopes in Ecological Research, pp. 230251 [Rundel, P. W., Ehleringer, J. R. and Nagy, K. A., editors]. Berlin: Springer Verlag.CrossRefGoogle Scholar
Schoell, M. & Hayes, J. M. (1994). Compound specific isotopic analysis in biogeochemistry and petroleum research - Introduction. Organic Geochemistry 21, R5.Google Scholar
Schoeninger, M. J. & DeNiro, M. J. (1984). Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial mammals. Geochimica Cosmochimica Acta 48, 625639.Google Scholar
Schoeninger, M. J., DeNiro, M. J. & Tauber, H. (1983). Stable nitrogen isotope ratios of bone collagen reflect marine and terrestrial components of prehistoric human diet. Science 220, 13811383.Google Scholar
Silfer, J. A., Engel, M. H., Macko, S. A. & Jumeau, E. J. (1991). Stable carbon isotope analysis of amino acid enantiomers by conventional isotope ratio mass spectrometry and combined gas chromatography/lisotope ratio mass spectrometry. Analytical Chemistry 63, 370374.Google Scholar
Smith, B. N. & Epstein, S. (1971). Two categories of 13C/12C ratios for higher plants. Plant Physiology 47, 380384.Google Scholar
Smits, C. M. M., Slough, B. G. & Yasui, C. A. (1989). Summer food habits of sympatric arctic foxes, Alopex lagopus, and red foxes, Vulpes vulpes, in the northern Yukon Territory. Canadian Field Naturalist 103, 363367.CrossRefGoogle Scholar
Stickney, A. (1991). Seasonal patterns of prey availability and the foraging behavior of arctic foxes (Alopex lagopus) in a waterfowl nesting area. Canadian Journal of Zoology 69, 28532859.Google Scholar
Stirling, I. (1988). Polar Bears. Ann Arbor, MI: University of Michigan Press.Google Scholar
Thompson, D. R., Furness, R. W. & Lewis, S. A. (1995). Diets and long-term changes in δ15N and δ13C values in northern fulmars Fulmarus glacialis from two Northeast Atlantic colonies. Marine Ecology Progress Series 125, 311.Google Scholar
Tieszen, L. L. & Boutton, T. W. (1988). Stable carbon isotopes in terrestrial ecosystem research. In Stable Isotopes in Ecological Research, pp. 167195 [Rundel, P. W., Ehleringer, J. R. and Nagy, K. A., editors]. Berlin: Springer-Verlag.Google Scholar
Tieszen, L. L., Boutton, T. W., Tesdahl, K. G. & Slade, N. A. (1983). Fractionation and turnover of stable carbon isotopes in animal tissues: Implications for δ13C analysis of diet. Oecologia 57, 3237.Google Scholar
Tjønneland, A., Overvad, K., Thorling, E. & Ewertz, M. (1993). Adipose tissue fatty acids as biomarkers of dietary exposure in Danish men and women. American Journal of Clinical Nutrition 57, 629633.Google Scholar
Tuross, N., Fogel, M. L. & Hare, P. E. (1988). Variability in the preservation of the isotopic composition of collagen from fossil bone. Geochimica Cosmochimica Acta 52, 929935.Google Scholar
Tykot, R. H., Vandermenve, N. J. & Hammond, N. (1996). Stable isotope analysis of bone collagen, bone apatite, and tooth enamel in the reconstruction of human diet - a case study from Cuello, Belize. American Chemical Society Symposium Series 625, 355365.Google Scholar
Unander, S., Mortensen, A. & Elvebakk, A. (1985). Seasonal changes in crop content of the Svalbard Ptarmigan Lagopus mutus hyperboreus. Polar Research 3, 239245.Google Scholar
Wada, E., Mizutani, H. & Minagawa, M. (1991). The use of stable isotopes for food web analysis. Critical Reviews in Food Science and Nutrition 30, 361371.CrossRefGoogle ScholarPubMed