Published online by Cambridge University Press: 14 November 2011
Hyperasymptotic expansions were recently introduced by Berry and Howls, and yield refined information by expanding remainders in asymptotic expansions. In a recent paper of Olde Daalhuis, a method was given for obtaining hyperasymptotic expansions of integrals that represent the confluent hypergeometric U-function. This paper gives an extension of that method to neighbourhoods of the so-called Stokes lines. At each level, the remainder is exponentially small compared with the previous remainders. Two numerical illustrations confirm these exponential improvements.