We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
This journal utilises an Online Peer Review Service (OPRS) for submissions. By clicking "Continue" you will be taken to our partner site
https://mc.manuscriptcentral.com/pma.
Please be aware that your Cambridge account is not valid for this OPRS and registration is required. We strongly advise you to read all "Author instructions" in the "Journal information" area prior to submitting.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A theoretical and experimental framework for novel metamaterial with programmable damping properties is presented. This material system is able to switch between elastic-dominated and damping-dominated regimes with different overall stiffness under dynamic loading depending on the external stimulus. The unit cell combines an auxetic and a bellow-like layer separated by an interface through which the amount of media flow can be tuned depending on the lateral strain. A simplified analytical model is derived to analyse the programmable damping effect. The model is further extended with a fluid-dynamics approach to link the effective damping properties with geometrical parameters to aid with the practical design of the metamaterial. Afterward, experiments are conducted on a macroscopic level using laser-sintered unit cells to validate the functionality of the concept both with air and water as media within the unit cells. To conclude the work, initial results on microscopic-level unit cells fabricated by two-photon lithography are introduced to showcase the scalability of the concept. This work provides an experimentally validated theoretical framework for future investigations to design unit cells with programmable damping on different length scales for applications requiring tailored dynamic energy dissipation.
The seed coat of tobacco displays an intriguing cellular pattern characterised by puzzle-like shapes whose specific function is unknown. Here, we perform a detailed investigation of the structure of tobacco seeds by electron microscopy and then follow the germination process by time lapse optical microscopy. We use particle image velocimetry to reveal the local deformation fields and perform compression experiments to study the mechanical properties of the seeds as a function of their hydration. To understand the mechanical role of the observed coat structure, we perform finite element calculations comparing structure with puzzle-shaped cells with similar structures lacking re-entrant features. The results indicate that puzzle-shaped cells act as stress suppressors and reduce the Poisson’s ratio of the seed coat structure. We thus conclude that the peculiar cellular structure of these seed coats serves a mechanical purpose that could be relevant to control germination.
Shape memory polymers (SMPs) are a type of programmable materials capable of transforming their shapes in a pre-programmed way upon the application of an external stimulus. These materials have been tested for various potential applications particularly in the biomedical field for polymers with general and specific requirements. This review focuses on the recent advances in biomedical applications, including self-tightening sutures, pressure bandages, self-expansion stents, tissue engineering scaffolds, artificial muscles, drug delivery, and orthodontic archwires, after a brief description of the concepts, classifications, programming procedures, and material requirements of SMPs.
Herein, a new method to synthesise epoxide-based sequence-controlled polymers via anionic ring-opening monomer addition, a form of anionic ring-opening polymerisation, is presented. This technique allows in combination with post-polymerisation modification (PPM) reactions for the successful preparation of modified mPEG-b-oligo(allyl glycidyl ether) featuring the incorporation of one repeating unit on average at a time. Due to the possible introduction of a vast variety of molecules to the polymeric system via PPM reactions, a multitude of advanced functional polymeric materials can be generated. This, in combination with the chain extension reactions, allows for the synthesis of well-controlled and programmable architectures with particular properties. The structure of the sequence-controlled polymer was confirmed via 1H NMR spectroscopy, size exclusion chromatography, attenuated total reflection Fourier-transform infrared spectroscopy, and differential scanning calorimetry.
Shape-memory polymers can be used to develop thermoresponsive programmable materials that can take on sensory and actuator tasks as their ambient temperature changes. In this contribution, a self-synthesised poly(1,10-decylene adipate) diol-based polyester urethane (PEU) was used for their fabrication. After processing the PEU into filaments, programmable materials, including a gear-like object, the teeth of a ‘bevel gear’ and a unit cell, were additively manufactured by fused filament fabrication. In any case, a thermomechanical treatment was conducted that involved the deformation of the polymer at 75°C. After cooling to 15°C, the programmable materials were unloaded and the thermoresponsiveness between 23°C and 58°C was investigated. A maximum thermoreversible change in height of about 39% was detected for the ‘gear’. With regard to the ‘bevel gear’, proof of feasibility was provided for use as overheating protection, so that a force transmission could be switched off when heated and switched on when cooled down. The unit cell actuated under a weak external load of 0.01 N, thus exhibiting thermoreversible length changes of about 45%.