Hostname: page-component-5f745c7db-hj587 Total loading time: 0 Render date: 2025-01-06T23:49:36.706Z Has data issue: true hasContentIssue false

Simple Structure in Component Analysis Techniques for Mixtures of Qualitative and Quantitative Variables

Published online by Cambridge University Press:  01 January 2025

Henk A. L. Kiers*
Affiliation:
University of Groningen
*
Requests for reprints should be sent to Henk A. L. Kiers, Department of Psychology, Grote Kruisstr. 2/1, 9712 TS Groningen, THE NETHERLANDS.

Abstract

Several methods have been developed for the analysis of a mixture of qualitative and quantitative variables, and one, called PCAMIX, includes ordinary principal component analysis (PCA) and multiple correspondence analysis (MCA) as special cases. The present paper proposes several techniques for simple structure rotation of a PCAMIX solution based on the rotation of component scores and indicates how these can be viewed as generalizations of the simple structure methods for PCA. In addition, a recently developed technique for the analysis of mixtures of qualitative and quantitative variables, called INDOMIX, is shown to construct component scores (without rotational freedom) maximizing the quartimax criterion over all possible sets of component scores. A numerical example is used to illustrate the implication that when used for qualitative variables, INDOMIX provides axes that discriminate between the observation units better than do those generated from MCA.

Type
Original Paper
Copyright
Copyright © 1991 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The Netherlands organization for scientific research (NWO) is gratefully acknowledged for funding this project. This research was conducted while the author was supported by a PSYCHON-grant (560-267-011) from this organization. The author is obliged to Jos ten Berge for his comments on an earlier version.

References

Carroll, J. D., & Chang, J. J. (1970). Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition. Psychometrika, 35, 283319.CrossRefGoogle Scholar
Clarkson, D. B., & Jennrich, R. I. (1988). Quartic rotation criteria and algorithms. Psychometrika, 53, 251259.CrossRefGoogle Scholar
Crawford, C. B., & Ferguson, G. A. (1970). A general rotation criterion and its use in orthogonal rotation. Psychometrika, 35, 321332.CrossRefGoogle Scholar
de Leeuw, J. (1973). Canonical analysis of categorical data. Unpublished doctoral dissertation, University of Leiden.Google Scholar
de Leeuw, J., & Pruzansky, S. (1978). A new computational method to fit the weighted Euclidean distance model. Psychometrika, 43, 479490.CrossRefGoogle Scholar
de Leeuw, J., & van Rijckevorsel, J. L. A. (1980). HOMALS and PRINCALS, some generalizations of principal components analysis. In Diday, E. et al. (Eds.), Data analysis and informatics II (pp. 231242). Amsterdam: Elsevier Science Publishers.Google Scholar
Escofier, B. (1979). Traitement simultané de variables qualitatives et quantitatives en analyse factorielle [Simultaneous treatment of qualitative and quantitative variables in factor analysis]. Cahiers de l'Analyse des Données, 4, 137146.Google Scholar
Ferguson, G. A. (1954). The concept of parsimony in factor analysis. Psychometrika, 19, 281290.CrossRefGoogle Scholar
Gifi, A. (1990). Nonlinear multivariate analysis, New York: Wiley.Google Scholar
Harman, H. H. (1976). Modern factor analysis 3rd ed., Chicago: University of Chicago Press.Google Scholar
Hartigan, J. A. (1975). Clustering algorithms, New York: Wiley.Google Scholar
Jennrich, R. I. (1970). Orthogonal rotation algorithms. Psychometrika, 35, 229235.CrossRefGoogle Scholar
Kaiser, H. F. (1958). The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23, 187200.CrossRefGoogle Scholar
Kiers, H. A. L. (1988). Principal components analysis on a mixture of quantitative and qualitative data based on generalized correlation coefficients. In Jansen, M. G. H. & van Schuur, W. H. (Eds.), The many faces of multivariate analysis, Vol. I, Proceedings of the SMABS-88 Conference in Groningen (pp. 6781). Groningen: Rion.Google Scholar
Kiers, H. A. L. (1989). A computational short-cut for INDSCAL with orthonormality constraints on positive semi-definite matrices of low rank. Computational Statistics Quarterly, 2, 119135.Google Scholar
Kiers, H. A. L. (1989). INDSCAL for the analysis of categorical data. In Coppi, R. & Bolasco, S. (Eds.), Multiway data analysis (pp. 155167). Amsterdam: Elsevier Science Publishers.Google Scholar
Kiers, H. A. L. (1989). Three-way methods for the analysis of qualitative and quantitative two-way data, Leiden: DSWO Press.Google Scholar
Kiers, H. A. L. (1990). Majorization as a tool for optimizing a class of matrix functions. Psychometrika, 55, 417428.CrossRefGoogle Scholar
Nishisato, S. (1980). Analysis of categorical data: Dual scaling and its applications, Toronto: University Press.CrossRefGoogle Scholar
Nishisato, S., & Sheu, W.-J. (1980). Piecewise method of reciprocal averages for dual scaling of multiple-choice data. Psychometrika, 45, 467478.CrossRefGoogle Scholar
Saporta, G. (1976). Quelques applications des opérateurs d'Escoufier au traitement des variables qualitatives [Several Escoufier operators for the treatment of qualitative variables]. Statistique et Analyse des Données, 1, 3846.Google Scholar
ten Berge, J. M. F. (1983). A generalization of Kristof's theorem on the trace of certain matrix products. Psychometrika, 48, 519523.CrossRefGoogle Scholar
ten Berge, J. M. F. (1984). A joint treatment of varimax rotation and the problem of diagonalizing symmetric matrices simultaneously in the least-squares sense. Psychometrika, 49, 347358.CrossRefGoogle Scholar
ten Berge, J. M. F., Knol, D. L., & Kiers, H. A. L. (1988). A treatment of the orthomax rotation family in terms of diagonalization, and a re-examination of a singular value approach to varimax rotation. Computational Statistics Quarterly, 3, 207217.Google Scholar
Tenenhaus, M., & Young, F. W. (1985). An analysis and synthesis of multiple correspondence analysis, optimal scaling, dual scaling, homogeneity analysis and other methods for quantifying categorical multivariate data. Psychometrika, 50, 91119.CrossRefGoogle Scholar