Several methods have been developed for the analysis of a mixture of qualitative and quantitative variables, and one, called PCAMIX, includes ordinary principal component analysis (PCA) and multiple correspondence analysis (MCA) as special cases. The present paper proposes several techniques for simple structure rotation of a PCAMIX solution based on the rotation of component scores and indicates how these can be viewed as generalizations of the simple structure methods for PCA. In addition, a recently developed technique for the analysis of mixtures of qualitative and quantitative variables, called INDOMIX, is shown to construct component scores (without rotational freedom) maximizing the quartimax criterion over all possible sets of component scores. A numerical example is used to illustrate the implication that when used for qualitative variables, INDOMIX provides axes that discriminate between the observation units better than do those generated from MCA.