Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-07T15:24:55.107Z Has data issue: false hasContentIssue false

Some Improved Diagnostics for Failure of the Rasch Model

Published online by Cambridge University Press:  01 January 2025

Ivo W. Molenaar*
Affiliation:
University of Groningen
*
Requests for reprints should be sent to Ivo W. Molenaar, Fac. Soc. Wet., Oude Boteringestraat 23, 9712 GC Groningen, Netherlands.

Abstract

Although several goodness of fit tests have been developed for the Rasch model for dichotomous items, most of them are of a global, asymptotic, and confirmatory type. This paper, based on ideas from a recent thesis by Van den Wollenberg, offers some suggestions for local, small sample, and exploratory techniques: difficulty plots for person groups scoring right and wrong on a specific item, a slope test per item based on a binomial distribution per score group, and a unidimensionality check based on an extended hypergeometric distribution per score group.

Type
Original Paper
Copyright
Copyright © 1983 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This paper owes much to the inspiring and pioneering work of Arnold Van den Wollenberg, of which only minor aspects are criticized. Thanks go to Charles Lewis for stimulating discussions and for solutions to some programming problems.

References

Reference Notes

Allerup, P. & Sorber, G. The Rasch model for questionnaires. With a computer program 2nd ed, . Copenhagen: The Danish Institute for Educational Research. 1977, 44.Google Scholar
Gustafsson, J. E. The Rasch model for dichotomous items: Theory applications and a computer program. Reports from the Institute of Education, University of Göteborg, no. 63, 1977.Google Scholar
Gustafsson, J. E. PML: A computer program for conditional estimation and testing in the Rasch model for dichotomous items, Reports from the Institute of Education, University of Göteborg, no. 85, 1979.Google Scholar
Raaijmakers, N. H. & Van den Wollenberg, A. L. Radi: program for the dichotomous Rasch model. Program Bulletin, University of Nijmegen, 1979.Google Scholar
Martin-Löf, P. Statistika modeller. Anteckningar från seminarier läsaret 1969–70 utarbetade av Rolf Sundberg, 2 : a uppl. (Statistical models. Notes from seminars 1969–70 by Rolf Sundberg, 2nd ed.) Institute för försäkringsmatematik och matematisk statistik vid Stockholms universitet, 1973.Google Scholar
Stene, E. An exact test for stochastic independence of responses in an item analysis model, Symposium on Rasch models, Køge (Denmark), 1969.Google Scholar
Kelderman, H. (1982) Loglinear Rasch model tests. Submitted to Psychometrika.Google Scholar
Andersen, E. B. A general latent structure model for contingency table data, paper presented in Princeton, May 1982, to be published.Google Scholar
Andersen, E. B. A goodness of fit test for the Rasch model. Psychometrika, 1973, 38, 123140.CrossRefGoogle Scholar
Andersen, E. B. Latent trait models and ability parameter estimation. Applied Psychological Measurement, 1982, to be published.CrossRefGoogle Scholar
Fischer, G. H. Einführung in die Theorie Psychologischer Tests. Grundlagen und Anwendungen, Bern: Huber, 1974.Google Scholar
Fischer, G. H. & Scheiblechner, H. Algorithmen und Programma für das probabilistische Testmodell von Rasch. Psychologische Beiträge, 1970, 12, 2351.Google Scholar
Formann, A. K. Über die Verwendung von Items als Teilungskriterium für Modellkontrollen im Modell von Rasch. Zeitschrift für Experimentelle und Angewandte Psychologie, 1981, 28, 541560.Google Scholar
Gustafsson, J. E. Testing and obtaining fit of data to the Rasch model. British Journal of Mathematical and Statistical Psychology, 1980, 33, 205233.CrossRefGoogle Scholar
Harkness, W. L. Properties of the Extended Hypergeometric distribution. Annals of Mathematical Statistics, 1965, 36, 938945.CrossRefGoogle Scholar
Lehmann, E. L. Testing Statistical Hypotheses, Wiley: New York, 1959.Google Scholar
Lord, F. M. Applications of item response theory to practical testing. Erlbaum, Hillsdale N.J., 1981.Google Scholar
Patil, G. G. & Joshi, S. W. A dictionary and bibliography of discrete distributions, Edinburgh: Oliver & Boyd, 1968.Google Scholar
Van den Wollenberg, A. L. The Rasch model and time-limit tests, Ph.D. thesis, University of Nijmegen, 1979.Google Scholar
Van den Wollenberg, A. L. Two new test statistics for the Rasch model. Psychometrika, 1982, 47, 123140.CrossRefGoogle Scholar
Wainer, H., Morgan, A. & Gustafsson, J. E. A review of estimation procedures for the Rasch model with an eye toward longish tests. Journal of Educational Statistics, 1980, 5, 3564.CrossRefGoogle Scholar
Wallis, W. A. Compounding probabilities from independent significance tests. Econometrica, 1942, 10, 229248.CrossRefGoogle Scholar
Wright, B. D. & Panchapakesan, N. A procedure for sample-free item analysis. Educational and Psychological Measurement, 1969, 28, 2348.CrossRefGoogle Scholar
Wright, B. D. & Stone, M. H. Best test design, Rasch measurement, MESA PRESS, 5835 Kimbark Ave. Chicago (Ill), 1979.Google Scholar
Andersen, E. B. A goodness of fit test for the Rasch model. Psychometrika, 1973, 38, 123140.CrossRefGoogle Scholar
Andersen, E. B. Latent trait models and ability parameter estimation. Applied Psychological Measurement, 1982, to be published.CrossRefGoogle Scholar
Fischer, G. H. Einführung in die Theorie Psychologischer Tests. Grundlagen und Anwendungen, Bern: Huber, 1974.Google Scholar
Fischer, G. H. & Scheiblechner, H. Algorithmen und Programma für das probabilistische Testmodell von Rasch. Psychologische Beiträge, 1970, 12, 2351.Google Scholar
Formann, A. K. Über die Verwendung von Items als Teilungskriterium für Modellkontrollen im Modell von Rasch. Zeitschrift für Experimentelle und Angewandte Psychologie, 1981, 28, 541560.Google Scholar
Gustafsson, J. E. Testing and obtaining fit of data to the Rasch model. British Journal of Mathematical and Statistical Psychology, 1980, 33, 205233.CrossRefGoogle Scholar
Harkness, W. L. Properties of the Extended Hypergeometric distribution. Annals of Mathematical Statistics, 1965, 36, 938945.CrossRefGoogle Scholar
Lehmann, E. L. Testing Statistical Hypotheses, Wiley: New York, 1959.Google Scholar
Lord, F. M. Applications of item response theory to practical testing. Erlbaum, Hillsdale N.J., 1981.Google Scholar
Patil, G. G. & Joshi, S. W. A dictionary and bibliography of discrete distributions, Edinburgh: Oliver & Boyd, 1968.Google Scholar
Van den Wollenberg, A. L. The Rasch model and time-limit tests, Ph.D. thesis, University of Nijmegen, 1979.Google Scholar
Van den Wollenberg, A. L. Two new test statistics for the Rasch model. Psychometrika, 1982, 47, 123140.CrossRefGoogle Scholar
Wainer, H., Morgan, A. & Gustafsson, J. E. A review of estimation procedures for the Rasch model with an eye toward longish tests. Journal of Educational Statistics, 1980, 5, 3564.CrossRefGoogle Scholar
Wallis, W. A. Compounding probabilities from independent significance tests. Econometrica, 1942, 10, 229248.CrossRefGoogle Scholar
Wright, B. D. & Panchapakesan, N. A procedure for sample-free item analysis. Educational and Psychological Measurement, 1969, 28, 2348.CrossRefGoogle Scholar
Wright, B. D. & Stone, M. H. Best test design, Rasch measurement, MESA PRESS, 5835 Kimbark Ave. Chicago (Ill), 1979.Google Scholar