Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-10T21:14:06.272Z Has data issue: false hasContentIssue false

Linear bonds valuation with interest rate models: Does it work?

Published online by Cambridge University Press:  17 August 2016

Rudy De Winne*
Affiliation:
Facultés Universitaires Catholiques de Mons (FUCaM)
Get access

Summary

This paper compares the implications of different interest rate models for valuing the so-called OLOs (Belgian coupon bonds). The prices of these bonds implied by some well-known one-factor models are compared to the actual prices observed on the market. Our finding suggest that these interest rate models are unsatisfactory, especially in valuing longer term bonds.

Résumé

Résumé

Dans cet article, nous procédons à l'évaluation d'obligations linéaires (OLOs) émises par l'État belge. Les modèles d'évaluation dynamique les plus connus sont utilisés et les prix théoriques obtenus sont comparés aux cours observés sur le marché secondaire de manière à préciser les performances des modèles étudiés. Notre travail montre que ces modèles sont très imprécis, particulièrement pour les obligations de maturité plus longue.

Keywords

Type
Research Article
Copyright
Copyright © Université catholique de Louvain, Institut de recherches économiques et sociales 1998 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

This paper is based on my dissertation at the Université Catholique de Louvain. I am grateful for valuable suggestions of many colleagues, both at my institution and others. I wish to thank especially Alain François-Heude (Lille II) for his help. The paper also benefits from the useful comments of two anonymous referees. Any remaining errors are my responsibility.

References

Black, F. and Scholes, M. [1973], The pricing of options and corporate liabilities, Journal of Political Economy, 81(3), pp. 637654.Google Scholar
Brennan, M. and Schwartz, E. [1979], A continuous time approach to the pricing of bonds, Journal of Banking and Finance, 3(1), pp. 133155.Google Scholar
Brennan, M. and Schwartz, E. [1980], Analyzing convertible bonds, Journal of Financial and Quantitative Analysis, 15(4), pp. 907929.Google Scholar
Brown, S. and Dybvig, P. [1986], The empirical implications of the Cox, Ingersoll, Ross theory of the term structure of interest rates, Journal of Finance, 41(3), pp. 617632.Google Scholar
Broze, L., Scaillet, O. and Zakoïan, J.-M. [1995], Testing for continuous-time models of the short-term interest rate, Journal of Empirical Finance, 2(3), pp. 199223.Google Scholar
Broze, L., Scaillet, O. and Zakoïan, J.-M. [1997], Quasi indirect inference for diffusion processes, forthcoming in Econometric Theory.Google Scholar
Chan, K., Karolyi, G., Longstaff, F. and Sanders, A. [1992], An empirical comparison of alternative models of the short-term interest rate, Journal of Finance, 47(3) pp. 12091227.Google Scholar
Cox, J., Ingersoll, J. and Ross, S. [1985], A theory of the term structure of interest rates, Econometrica, 53(2), pp. 385407.Google Scholar
De Winne, R. [1995], The discretization bias for processes of the short-term interest rate: an empirical analysis, Discussion Paper CORE.Google Scholar
Duffie, D. [1992] Dynamic Asset Pricing Theory, Princeton, Mass., Princeton University Press.Google Scholar
Kloeden, P. and Platen, E., [1992], Numerical Solution of Stochastic Differential Equations, Berlin, Springer-Verlag.Google Scholar
Langetieg, T. [1980], A multivariate model of the term structure, Journal of Finance, 35(1), pp. 7197.Google Scholar
Longstaff, F. [1989], A nonlinear general equilibrium model of the term structure of interest rates, Journal of Financial Economics, 23(2), pp. 195224.Google Scholar
Longstaff, F. and Schwartz, E. [1992], Interest rate volatility and term structure: a two-factor general equilibrium model, Journal of Finance, 47(4), pp. 12591282.Google Scholar
Merton, R. [1973], Theory of rational option pricing, Bell Journal of Economics, 4(1), pp. 141183.Google Scholar
Richard, S. [1978], An arbitrage model of the term structure of interest rates, Journal of Financial Economics, 6(1), pp. 3357.Google Scholar
Sercu, P. and Wu, X. [1997], The information content in bond model residuals: an empirical study on the Belgian bond market, Journal of Banking and Finance, 21(5), pp. 685720.Google Scholar
Vasicek, O. [1977], An equilibrium characterization of the term structure, Journal of Financial Economics, 5(1), pp. 177188.Google Scholar