To a polynomial f over a non-archimedean local field K and a character χ of the group of units of the valuation ring of K one associates Igusa’s local zeta function Z (s, f, χ). In this paper, we study the local zeta function Z(s, f, χ) associated to a non-degenerate polynomial f, by using an approach based on the p-adic stationary phase formula and Néron p-desingularization. We give a small set of candidates for the poles of Z (s, f, χ) in terms of the Newton polyhedron Γ(f) of f. We also show that for almost all χ, the local zeta function Z(s, f, χ) is a polynomial in q−s whose degree is bounded by a constant independent of χ. Our second result is a description of the largest pole of Z(s, f, χtriv) in terms of Γ(f) when the distance between Γ(f) and the origin is at most one.