Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-15T07:25:58.757Z Has data issue: false hasContentIssue false

Hebbian Learning is about contingency, not contiguity, and explains the emergence of predictive mirror neurons

Published online by Cambridge University Press:  29 April 2014

Christian Keysers
Affiliation:
Netherlands Institute for Neuroscience, KNAW, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands. c.keysers@nin.knaw.nlhttp://www.nin.knaw.nl/research_groups/keysers_groupv.gazzola@nin.knaw.nlhttp://www.nin.knaw.nl/research_groups/keysers_group/team/valeria_gazzola Department of Neuroscience, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands.
David I. Perrett
Affiliation:
School of Psychology, University of St Andrews, St Andrews, Scotland, KY16 9JU, United Kingdom. dp@st-and.ac.ukhttp://www.perceptionlab.com/
Valeria Gazzola
Affiliation:
Netherlands Institute for Neuroscience, KNAW, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands. c.keysers@nin.knaw.nlhttp://www.nin.knaw.nl/research_groups/keysers_groupv.gazzola@nin.knaw.nlhttp://www.nin.knaw.nl/research_groups/keysers_group/team/valeria_gazzola Department of Neuroscience, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands.

Abstract

Hebbian Learning should not be reduced to contiguity, as it detects contingency and causality. Hebbian Learning accounts of mirror neurons make predictions that differ from associative learning: Through Hebbian Learning, mirror neurons become dynamic networks that calculate predictions and prediction errors and relate to ideomotor theories. The social force of imitation is important for mirror neuron emergence and suggests canalization.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bauer, E. P., LeDoux, J. E. & Nader, K. (2001) Fear conditioning and LTP in the lateral amygdala are sensitive to the same stimulus contingencies. Nature Neuroscience 4(7):687–88.Google Scholar
Caporale, N. & Dan, Y. (2008) Spike timing-dependent plasticity: A Hebbian learning rule. Annual Review of Neuroscience 31:2546.Google Scholar
Del Giudice, M., Manera, V. & Keysers, C. (2009) Programmed to learn? The ontogeny of mirror neurons. Developmental Science 12(2):350–63. doi: 10.1111/j.1467-7687.2008.00783.x.CrossRefGoogle ScholarPubMed
Friston, K., Mattout, J. & Kilner, J. (2011) Action understanding and active inference. Biological Cybernetics 104(1–2):137–60.Google Scholar
Hebb, D. (1949) The organisation of behaviour. Wiley.Google Scholar
Heyes, C. M. (2001) Causes and consequences of imitation. Trends in Cognitive Sciences 5(6):253–61.CrossRefGoogle ScholarPubMed
Hommel, B., Müsseler, J., Aschersleben, G. & Prinz, W. (2001) The Theory of Event Coding (TEC): A framework for perception and action planning. Behavioral and Brain Sciences 24(5):849–78.Google Scholar
Keysers, C. (2011) The empathic brain. Social Brain Press.Google Scholar
Keysers, C. & Perrett, D. I. (2004) Demystifying social cognition: A Hebbian perspective. Trends in Cognitive Sciences 8(11):501507.CrossRefGoogle ScholarPubMed
Keysers, C., Xiao, D. K., Foldiak, P. & Perrett, D. I. (2001) The speed of sight. Journal of Cognitive Neuroscience 13(1):90101.Google Scholar
Schippers, M. B. & Keysers, C. (2011) Mapping the flow of information within the putative mirror neuron system during gesture observation. Neuroimage 57(1):3744.CrossRefGoogle ScholarPubMed
Umiltà, M. A., Kohler, E., Gallese, V., Fogassi, L., Fadiga, L., Keysers, C. & Rizzolatti, G. (2001) I know what you are doing: A neurophysiological study. Neuron 31(1):155–65.Google Scholar
Urgesi, C., Maieron, M., Avenanti, A., Tidoni, E., Fabbro, F. & Aglioti, S. M. (2010) Simulating the future of actions in the human corticospinal system. Cerebral Cortex 20(11):2511–21.Google Scholar