Let $R$ be an arbitrary ring and let ${{\left( - \right)}^{+}}\,=\,\text{Ho}{{\text{m}}_{\mathbb{Z}}}\left( -,\,{\mathbb{Q}}/{\mathbb{Z}}\; \right)$, where $\mathbb{Z}$ is the ring of integers and $\mathbb{Q}$ is the ring of rational numbers. Let $\mathcal{C}$ be a subcategory of left $R$-modules and $\mathcal{D}$ a subcategory of right $R$-modules such that ${{X}^{+}}\,\in \,\mathcal{D}$ for any $X\,\in \,\mathcal{C}$ and all modules in $\mathcal{C}$ are pure injective. Then a homomorphism $f:\,A\to \,C$ of left $R$-modules with $C\,\in \,\mathcal{C}$ is a $\mathcal{C}$-(pre)envelope of $A$ provided ${{f}^{+}}:\,{{C}^{+}}\,\to \,{{A}^{+}}$ is a $\mathcal{D}$-(pre)cover of ${{A}^{+}}$. Some applications of this result are given.